Miocene extensional basins (Sorbas, SE Spain)

Veranstalter: Heiko Pälike, Simone Kasemann

Ansprechpartner: Heiko Pälike


Introduction to the world-class regional geology, structure and basin development/ sediment fill of Neogene extensional basins in the Betic orogenic belt in SE Spain. Study of the Carboneras Fault Zone that separates the Betic terrane from the Cabo de Gata volcanic terrane, and review of the geology and the mineralisation of the latter.
Course schedule: Tuesday 8.9 - Monday 21.09.2020

~220€ for flights e.g. Bremen - Malaga +20kg luggage (students to self-organise)
~336€ for accommodation, self-catering (€ 24 per person per day)
~150€ for hire car & fuel per student (if in groups of ~4)

~0€ contribution to remaining course costs (incl. staff) + food extra

Total costs : ca. 700€ per person + food


To learn the interesting and varied geology of the area, to develop and improve geological mapping skills, introducing new techniques, making more subtle observations and developing better interpretative skills in the field. Practice at map reading and compass bearings Pacing distances over difficult terrain Systematic use of grid references. Identification of rock types – igneous, metamorphic, volcaniclastic, sedimentary; recognition of volcaniclastic, extrusive/intrusive igneous rocks/ relationships, recognition of differing grades in metamorphic rocks?Recognition of sediment facies and depositional environments from deep-marine to fluvial that make up the fill of a series of small basins in the Betic Cordillera of Spain?Consideration of basin fill architecture and controls?Understanding of the economic geology of the region, including metallic resources and mines (and consideration of mineralising processes), evaporite deposits, and other resources?Measurement and recording of structural features, e.g. bedding, inter- section lineations, different types of cleavage, joints, faults, data plotting on stereonets and basic interpretation


Set exercises and formative feedback
We will run 2 short tests (10% each), a field logging exercise (10%), and sketch (10%). 1 field notebook inspection for formative feedback, and a field notebook inspection during the first eight days.
Independent Mapping
There will be an independent mapping exercise over 4 days (60%). Assessment includes map and interpretation, and mapping report.




W. Gibbons & T. Moreno, The Geology of Spain, The Geological Society, London (2006)

Sorbas Basin – shallow marine and evaporite sedimentation:

Baggley , K.A. (2000). The late Tortonian – early Messinian foraminiferal record of the Abad Member (Turre Formation), Sorbas Basin, Almeria, SE Spain. Paleontology, 43, 1069-1112.
Dronkert, H. (1976). Late Miocene evaporites in the Sorbas Basin and adjoining areas. Memores Societe Geologique Italiano, 16: 341-361.?
Martin, J. M. & Braga, J.C. (1994) Messinian Events in the Sorbas Basin In Southeastern Spain and their implications in the recent history of the Mediterranean. Sedimentary Geology, 90, 257268.?*Michalzik, D. (1996) Lithofacies, diagenetic spectra and sedimentary cycles of Messinian (Late Miocene) evaporites in SE Spain. Sedimentary Geology, 106, 203-222.?
Riding R., Braga J.C & Martin J.M. (1999) Late Miocene Mediterranean desiccation: topography
and significance of the ‘Salinity Crisis’ erosion surface on-land in southeast Spain. Sedimentary Geology, 123, 1-7.?
*Riding R., Braga J.C., Martin J.M. & Sanchez-Almazo I.M. (1999). Mediterranean Messinian Salinity Crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain. Marine Geology, 146, 1-20.
*Roep, T.B., Beets, D. J., Dronkert, H. & Paigner, H. (1979). A prograding coastal sequence of wave-built structures of Messinian age, Almería, Spain. Sedimentary Geology, 22: 135- 163.
Roep T.B., Dabrio C.J., Fortuin A.R. & Polo M.D. (1998). Late highstand patterns of shifting and stepping coastal barriers and washover-fans (late Messinian, Sorbas Basin, SE Spain. Sedimentary Geology, 123, 1-7.
Stapel, G., Moeys, R. & Biermann, C. (1996) Neogene evolution of the Sorbas Basin (SE Spain) determined by palaeostress analysis. Tectonophysics, 255, 291305.

Carbonate bioherm and reef complexes, Neogene, SE Spain:
Braga, J. C., Martin, J. M. & Riding, R. (1996) Internal structure of segment reefs halimeda algal mounds in the Mediterranean Miocene. Geology, 24, 3538.
*Dabrio, J., Esteban, M. & Martin, J. M. (1981). The coral reef of Níjar, Messinian (uppermost Miocene), Almería Province, SE Spain. Journal of Sedimentary Petrology, 51: 521-539.
Franseen, E.K. & Mankiewicz, C. (1991). Depositional sequences and correlation of middle(?) to late Miocene carbonate complexes, Las Negras and Níjar areas, southeastern Spain. Sedimentology, 38: 871-898.
Martin, J.M. & Braga, J.C. & Rivas, P. (1987). Coral successions in Upper Tortonian reefs in SE spain. Lethaia, 22: 271-286.
Riding, R., Martin, J.M., & Braga, J.C. (1991). Coral-stromatolite reef framework, Upper Mio- cene, Almería, Spain. Sedimentology, 38: 799-818.

Pliocene-Pleistocene sedimentation, continental and fan-delta facies

*Mather, A.E. (1993). Evolution of a Pliocene fan delta: links between the Sorbas and Carboneras Basins, SE Spain. In: Frostick, L. & Steel, R. (eds.) Tectonic signatures in sedimen- tary successions. IAS Special Publication 20: 277-290.
Mather, A.E. (2000). Impact of headwater river capture on alluvial system development: an ex- ample from the Plio-Pleistocene of the Sorbas Basin, SE Spain. J Geol. Soc. London, 157, 957-966.

Cabo de Gata volcanic province: Los Frailes

*Cunningham, C.G., Arribas Jr, A., Rytuba, J.J. & Arribas, A. (1990). Mineralized and unmineral- ized calderas in Spain: Part 1, evolution of the Los Frailes Caldera. Mineralium Deposita (Supplement), 25, S21- S28.
Di Battistini, G., Toscani, L., Iaccarino, S., and Villa, I.M. (1987). K/Ar ages and the geological setting of calc-alkaline volcanic rocks from Sierra de Gata, SE Spain. Neues Jahrbuch Fur Mineralogie Monatshefte, 8, 369-383.
Zeck H.P., Maluski H. & Kristensen A.B. (2000). Revised geochronology of the Neogene calc- alkaline volcanic suite in Sierra de Gata, Alboran volcanic province, SE Spain. Journal of the Geological Society, London, 157, 75-81

Cabo de Gata volcanic province: Rodalquilar

*Arribas Jr., A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Podwysocki, M.H., McKee, E.H., & Tosdal, R.M. (1995). Geology, geochronology, fluid inclusions and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology, 90, 795- 822.
Arribas, Jr.A. (1993). The Rodalquilar caldera complex and associated gold-alunite deposits. Field trip guide book for the 2nd Biennual SGA Meeting, Granada 1993, pp.59-74.
Heald, P., Foley, N.K. and Hayba, D.O. (1987). Comparative anatomy of volcanic-hosted epi- thermal deposits: Acid-sulfate and adularia-sericite types. Economic Geology, 82, 1-26.
Rytuba, J.J. Arribas Jr, A., Cunningham, C.G. McKee, E.H., Podwysocki, M.H., Smith, J.G. Kelly, W.C. & Arribas, A. (1990). Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits. Mineralium Deposita (Supplement), 25, S29-S35.
Sanger-von Oepen P., Friedrich G & Vogt J.H. (1989) Fluid evolution, wallrock alteration and ore mineralisation associated with the Rodalquilar epithermal gold deposit in southeast Spain. Miineralium Deposita, 24, 235-243.

Cabo de Gata volcanic province: El Joyazo

Bellon, H., Bordet, P. and Montenat, C. (1983). Le magmatisme neogene des Cordilleres beti- ques (Espagne): Chronologie et principaux caracteres geochimiques. Bulletin Société Ge- ologie de France, 25, 205-218.
*Cesare B., Salvioli Mariani E. & Venturelli G. (1997). Crustal anatexis and melt extraction dur- ing deformation in the restitic xenoliths at El Joyazo (SE Spain). Mineralogical Magazine, 61, 15-27
Hernadez R.L., Martinez-Frias J. Benito R & Wolf D. (1999). Nijar and the garnets of Europe. Geotimes, 44, 22-27
Zeck H.P. (1992). Restite-melt and mafic-felsic magma mixing and mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Transactions of the Royal Society of Edinburgh, 83, 130-144.
Zeck, H.P. (1970). An erupted migmatite from the Cerro del Hoyazo, SE Spain. Contributions in Mineralogy & Petrology, 26, 225-246.

Cabo de Gata volcanic province: Cabezo Maria

*Venturelli G., Capedri S., Battistini G., Crawford A., Rogarro L.N., & Celestini S. (1984). The ultrapotassic rocks from SE Spain. Lithos, 17, 37-54.

Carboneras fault zone:

Bell J.W., Amelung F. & King G.C.P. (1997). Preliminary late Quaternary slip history of the Carboneras fault. sotheastern Spain. Journal of Geodynamics, 24, 51-65.
Keller, J.V.A, Hall, S.H. & McClay, K.R. (1997). Shear fracture pattern and microstructural evolution in transpressional fault zones from field and laboratory studies. Journal of Structural Geology, 19, 1173-1187.
*Montenat, C., Ott d’Estivou, P., Leyrit, H. & Barrier, P. (2000). The Breche Rouge of Carbon- eras. An example of Late Miocene volcanic megabreccia deposited in a deep marine basin controlled by wrench tectonics (Eastern Betics, Spain). In:Leyrit, H. & Montenat, C. (eds) Volcaniclastic rocks, from magmas to sediments. Gordon & Breach, Amsterdam.
*Scotney, P., Burgess, R. & Rutter, E.H. (2000). 40Ar/39Ar age of the Cabo de Gata volcanic se- ries and displacements on the Carboneras fault zone, SE Spain. Journal of the Geological Society, London, 157, 1003-1008.


Login required

Lecture Slides 31.1.2020