climate and the hydrological cycle in the Western Mediterranean, and its influence on human societies through time.

Studies of Late Pleistocene organic-rich lacustrine deposits in the Banyoles area, on the foothills of the Pyrenees, are representative of research being carried out on Catalonia’s palaeoclimate. Palaeo-temperatures were reconstructed from ostracode valve geochemistry, and vegetation history from pollen analysis over the last 40,000 years. Other continental and marine sequences record older palaeoenvironmental data, e.g. Abric Romani travertine or western Mediterranean marine cores. The composite palynological profile of Fig. 1 shows major climate changes during the last 70,000 years. At the beginning of the Holocene, the environment of the northeastern Iberian Peninsula was characterized by humid climate conditions, which became drier after 6,000 yr BP. There is also evidence from fluvial sedimentary deposits and historical documentary data that the overall Holocene climate trend was punctuated by minor climatic episodes, such as the Little Ice Age. In spite of frequent signs of early Neolithic land-management, the first noticeable human impact on natural environments dates from the Bronze Age. Archaeological, palynological and sedimentological data all point to the fact that major landscape changes occurred during the late Middle Ages and the Industrial period.

Despite all the research being carried out, there is still a shortage of palaeoclimatic records for Catalonia. Hopefully this will change in the future. The establishment of this research network is a first step towards determining research priorities on the understanding of past and present climate variability, and possible impacts on the region.

Information regarding the Catalan network of palaeoclimatology, its participating groups and workshops can be found at: antalya.uab.es/_c_ceambientals/Xarxes/XT_Paleoclima/index.htm
To request further information, please send an email to gr.xtpaleo@uab.es.

Paleoclimate Research within DEKLIM

G. Lohmann1,2 and F. Sirocko3

1Bremen University, Center for Marine Environmental Sciences, PO. 330440, 28334 Bremen, Germany
2Alfred-Wegener-Institute for Polar and Marine Research, 27570 Bremerhaven, Germany; gerrit.lohmann@dkrz.de
3Johannes-Gutenberg University of Mainz, Institute for Geology, 55099 Mainz, Germany; sirocko@mail.uni-mainz.de

The overarching aim of DEKLIM (German Climate Research Programme) is to improve climate predictability at global and regional scales by achieving a better understanding of long-term processes and climate modes. This includes:

(i) Detailed reconstructions of the temporal and spatial structure of climate change at centennial-to-millennial timescales from palaeoclimatic proxy data.

(ii) Climate modeling studies to disentangle the physical and biogeochemical processes involved in the generation of these modes.

The research objective within DEKLIM-Paleo is related to the driving mechanisms of past and future climate change. Specific questions are related to the interaction of vegetation, atmospheric dynamics,