Sediment-Color Record from the Northeast Atlantic Reveals Patterns of Millennial-Scale Climate Variability during the Past 500,000 Years

Jan P. Helmke

GEOMAR Research Center for Marine Geosciences, Wischhofstr. 1-3, D-24148 Kiel, Germany

Michael Schulz

Institute for Geosciences, University of Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany

and

Henning A. Bauch

Alfred-Wegener Institute for Polar and Marine Research, Columbusstrasse, D-27568 Bremerhaven, Germany

Received April 30, 2001

A 500,000-yr-long deep-sea sediment-color record from the Northeast Atlantic was investigated to reconstruct the evolution of late Pleistocene climate variability on millennial time scales. Variations of the red–green color intensity are probably caused by climatically induced changes in the ice-rafted input of red-colored iron-bearing terrigenous material to the core site. The resolution of the age model impedes the detection of distinct spectral features at sub-Milankovitch periodicities. Hence, millennial-scale climate variability is quantified as time-dependent variance of the high-pass filtered color time series. The course of the estimated variance shows distinct patterns, which can be linked to continental ice mass. During the past 500,000 yr, large-amplitude millennial-scale climate variability occurs only if continental ice mass exceeds a threshold level, equivalent to sea level at approximately 40% of the lowering during the last glacial maximum.

Key Words: sediment color; Northeast Atlantic; glacial–interglacial climate; millennial-scale variability; threshold level.

INTRODUCTION

Climate proxy data from various archives document large-amplitude climate fluctuations during the last glacial period on millennial time scales, i.e., variability between 10^3 and $<10^4$ yr. On longer time scales these include Heinrich events (e.g., Bond et al., 1992) with an average recurrence time of approximately 7000 yr (Sarnthein et al., 2001) and on shorter scales Dansgaard-Oeschger events (Dansgaard et al., 1993; Groottes and Stuiver, 1997) with a spacing of approximately 1500 yr and multiples thereof (Alley et al., 2001; Schulz, in press). Heinrich events are thought to be linked to internal oscillations of the Laurentide ice sheet (MacAyeal, 1993), whereas the origin of the Dansgaard–Oeschger events remains controversial, ranging from internal oscillations of the ocean–atmosphere system (Broecker et al., 1990; Winton, 1993; Sakai and Peltier, 1997) to periodic calving of the Greenland ice sheet (van Kreveld et al., 2000) and to external forcing mechanisms (van Geel et al., 1999; Keeling and Whorf, 2000). Furthermore, it has been suggested that millennial-scale climate variability, although with smaller amplitude, is not restricted to the last glacial period but is a pervasive feature of the recent interglaciation, the Holocene (Bond et al., 1997; deMenocal et al., 2000).

The possible interference of anthropogenic climate perturbations with natural climate fluctuations on millennial time scales is a challenging task in predicting future climate change. Previous studies demonstrated the suitability of color records from marine sediments to quantify millennial-scale climate change with high temporal resolution (Cortijo et al., 1995; Ortiz et al., 1999). However, marine sediment color records have so far not been used to document the evolution of millennial-scale climate fluctuations throughout the Late Quaternary. To gain better insight into these natural variations we analyze a high-resolution color record from Northeast Atlantic deep-sea sediments, which documents climate variability down to millennial time scales over the last five glacial–interglacial cycles.

DATA AND STRATIGRAPHY

Core M23414 was taken at the Rockall Plateau in the Northeast Atlantic (Fig. 1) on the northeastern fringe of Ruddiman’s North Atlantic ice-rafted debris (IRD) belt (Ruddiman, 1977). Several recent studies have shown that sediments from the Northeast Atlantic region are exceptionally suitable for investigating...
the behavior of glacial and interglacial climate variability on millennial time scales (e.g., Oppo et al., 1998, McManus et al., 1999; Bauch et al., 2000). Sediment-color measurements on the core were carried out at centimeter steps, using a handheld Minolta CM 2002 spectrophotometer. We use lightness L* and red-green chromaticity a* of the spherical L*a*b* color space (b* denotes blue-yellow chromaticity). Precision of the downcore color measurements was investigated using a set of 10 repeated measurements at three spots of the core. The mean standard deviation for these measurements is 0.06 for L* (range of L* values between 43.52 and 86.98) and 0.01 for a* (range of a* values between −0.52 and 4.19), resulting in typical signal-to-noise ratios of ∼500–700. Additionally, the lightness and red-green color variations of separate tracks down the core were measured. The differences are negligible with correlation coefficients (Spearman’s rank-order correlation) of ρ = 0.98 for lightness (p < 0.001, n = 469) and ρ = 0.93 for red–green color (p < 0.001, n = 41). These results clearly indicate that the spectrophotometer color data faithfully record downcore color fluctuations.

The good agreement between planktic oxygen isotope values (data from Jung, 1996), lightness, and carbonate concentration over the past 250,000 yr indicates that the latter two proxies can be used with confidence to identify the glacial and interglacial periods for the entire record. (Fig. 2a). Due to the good resemblance between the lightness and the SPECMAP oxygen isotope records, ages were assigned to downcore lightness and red–green color data by synchronizing the lightness record to the standard SPECMAP chronology (Imbrie et al., 1984; Martinson et al., 1987), employing constant sedimentation rates between the correlated stratigraphic levels (Fig. 2b). In addition, four accelerator mass spectrometry 14C ages and published ages of six Heinrich events (Sarnthein et al., 2001) were included to refine the age model of the last 60,000 yr. The 14C ages were converted into approximate calendar ages using the software CALIB 4.1.2 (Stuiver et al., 1998) and following Voelker et al. (1998). Heinrich events were identified based on the concentration of lithic grains in the size fraction >250 μm (Didié and Bauch, 2000).

This approach assumes that no phase offset exists between ice-volume variations, as recorded by the SPECMAP stack, and changes in CaCO3 concentration, as documented by the lightness record. Although we cannot rule out the possibility that productivity-driven changes in CaCO3 concentration and ice-volume variations occurred asynchronously, possible phase offsets of up to 3000 yr would not alter the main conclusions presented below. Tuning the planktic or benthic oxygen isotope record of site M23414 to the SPECMAP stack is hampered because these data cover only the last 250,000 yr (Jung, 1996). Moreover, both benthic and planktic oxygen isotope data display a shift of ∼1.9‰ during the last glacial-to-interglacial transition, which is larger than expected from the ice-volume effect alone (∼1.2‰; Chappell et al., 1996). Accordingly, changes in temperature and/or salinity most likely affected both oxygen isotope records (Bauch et al., 2000). Since temperature variations may have led changes in ice-volume (Shackleton, 2000), tuning either of the oxygen isotope series to the SPECMAP chronology would, therefore, not necessarily improve the age model.

LINKING SEDIMENT COLOR TO CLIMATE

Previous studies indicate that red–green color in North Atlantic deep-sea sediments is primarily controlled by the deposition of iron- and manganese-bearing components (Nagao and Nakashima, 1992). For core M23414 it seems most likely that variations in the concentration of red-colored, iron-bearing minerals are responsible for changes in the red–green chromaticity of the sediment. Investigations from sites in the vicinity of M23414 suggest that the deposition of the red-colored mineral hematite in the Northeast Atlantic during the last 40,000 yr is linked to millennial-scale climate variations (Bond and Lotti, 1995; Bond et al., 1997, 1999). These authors proposed that hematite-stained lithic grains stemming from continental red beds were transported via ice rafting to the core sites. X-ray fluorescence (XRF) analysis of samples from M23414 proved that the iron (measured as iron oxide) content of the sediment correlates with the red–green color, i.e., a higher iron content goes along with higher red–green values (Fig. 3). The correlation is significant on the basis of Spearman’s rank-order correlation coefficient (ρ = 0.89, p < 0.001, n = 10). Concentrations of specific iron-bearing minerals are too low to be identified using X-ray diffraction (XRD). Since hematite can be identified by XRD down to...
the first-derivative curve of the sediment reflectance spectrum (Fig. 4), a processing method previously used to identify red-colored iron minerals in marine sediments (Barranco et al., 1989; Balsam and Deaton, 1991). The presence of hematite leads to a
FIG. 3. Correlation of Fe$_2$O$_3$ (weight percentage of total iron converted to an oxide) and red–green color for a series of 10 sediment samples from M23414.

A single peak at 575 ± 10 nm in the first-derivative curve (for concentrations >0.1%), whereas the primary first-derivative peak of pure goethite occurs at 545 nm (Barranco et al., 1989). Spectra from hydrated oxides are variable and exhibit several peaks at shorter wavelength in the first-derivative curve (Barranco et al., 1989). The first-derivative curve of the reflectance data from M23414 is consistent with such a mixture of several iron oxides showing two peaks, a larger one at 555 nm and a smaller one at 435 nm (Fig. 4b).

A comparison of red–green color and IRD concentration generally reveals good agreement between the records (Fig. 5). In particular the upper parts of the records (Fig. 5b) strongly suggest that changes in red–green color are linked to changes in the concentration of IRD. A somewhat weaker correspondence emerges if the entire time series is considered. This may be due to various sources of IRD at the Rockall Plateau during the last 500,000 yr. For example, intervals of IRD input originating primarily from the British–Irish ice sheet, with the Paleozoic red sandstone rocks of the British Isles as a potential source of red-colored IRD components, may lead to a stronger correlation of red–green color and IRD than intervals of major IRD input stemming from other circum–North Atlantic ice sheets. This is in agreement with recent observations in which the IRD pattern and abundance of iron at the northeastern margin of the North Atlantic IRD belt reflect advances and retreats of the British–Irish ice sheet (Richter et al., 2001). However, further possible sources of reddish terrigenous material at the study site are the Proterozoic and Phanerozoic red beds of North America and East Greenland (Bond and Lotti, 1995) as well as iron-rich clay minerals stemming from Iceland.

The correlation of red–green chromaticity and total organic matter is very weak ($\rho = 0.23, p < 0.001, n = 268$); thus it is unlikely that organic matter should have a strong influence on the red–green color record. An influence of pore-water geochemistry on the red–green color record cannot be ruled out completely. However, oxidation of minerals containing green-colored Fe$_2^+$ into red-colored minerals containing Fe$_3^+$ during intervals of low sediment accumulation seems unlikely: A comparison of accumulation rates and red-green color during the last 60,000 yr, for which the time scale is most accurate, indicates that red-green color is not linked to changes in accumulation rate (correlation is not significant: $\rho = -0.05, p = 0.911, n = 8$).

Hence, we infer that variations in red–green color over the last 500,000 yr are mainly controlled by fluctuations in the input rate of iron-bearing minerals into the sediment, which in turn is linked to climate variations. In contrast, the interpretation of the lightness record is hampered by the fact that sediment lightness is affected by several mechanisms, such as carbonate productivity and preservation, concentrations of organic matter, and IRD, that may even counterbalance each other during a climatic perturbation (Balsam et al., 1999; Bond et al., 1999). To avoid ambiguous interpretations, we therefore restrict the following discussion to the red–green time series.

QUANTIFYING CLIMATE VARIABILITY

The visual alignment of the lightness record to the SPECMAP time scale rests on the identification of congruent patterns in both records. In the SPECMAP time series, the shortest patterns are associated with the precessional cycle of the Earth’s orbit, having a periodicity of about 21,000 yr (Imbrie et al., 1984). Since it is possible to identify and align half-precessional cycles in both records, the accuracy of the resulting age model will at least be half the period of the precessional cycle (relative to the SPECMAP chronology). On the other hand, the centimeter-sampled color data have an average resolution of approximately 360 yr (sample resolution ranges between 70 and 2000 yr), making them, in principle, suitable for resolving millennial-scale climate variability. Spectral analysis is commonly employed to
detect and quantify the contribution of millennial-scale variance to the total variance of the series under consideration. However, the uncertainty of the age model makes it unlikely that any distinct spectral peaks in the millennial band, which may have been recorded by the time series, will show up in a spectrum.

Nevertheless, to quantify climate variability in the millennial band, we first filtered the red–green color time series with a high-pass filter (Rybicki and Press, 1995) using a cutoff frequency of $1/12,000$ yr$^{-1}$, which is approximately half the precessional period (Fig. 6). The filtered time series thus reflects climate variability from millennial down to multicentennial time scales (limited by the average temporal resolution of the color record). In a second step, the variance of the filtered time series was estimated as a function of time. For this purpose a 8000-yr-wide “sliding window” was moved pointwise along the filtered time series. The variance of the filtered data within the window was determined and plotted against the mean age of the data points. (Note that due to the uneven spacing of the time series the number of data points in the window may vary.) Selection of the window width is a compromise between minimizing the uncertainty of the estimated variance (which decreases with a wider window) and maximizing the temporal resolution (which requires a narrow window). The selected width of 8000 yr offers a good compromise between statistical and systematic errors and the results are robust for reasonable choices of the window width; for widths between 6000 and 10,000 yr the results are almost indistinguishable (not shown). Since variance and the area under a spectrum measure the same quantity (Parseval’s theorem; Bendat and Piersol, 1986), this approach indirectly estimates spectral power in the entire millennial-to-multicentennial band.
FIG. 6. High-pass-filtered red–green color time series (see Fig. 1b). Cutoff frequency is 1/12,000 yr⁻¹, i.e., approximately half a precessional cycle.

PATTERNS OF CLIMATE VARIABILITY

Time-dependent variance of the red–green color shows that millennial-scale fluctuations with different amplitudes persisted during the past half a million years (Fig. 7). The comparison of the time-dependent variance of the red–green color record with the SPECMAP oxygen isotope record, which is a proxy for global sea level and therefore continental ice mass (Imbrie et al., 1984), reveals that nine variance maxima occurred during time intervals of ice-sheet growth, while three maxima go along with times of ice-sheet decay (Fig. 7). In particular, the variance maxima fall near the end of ice-growth intervals and near the start of ice-decay intervals, rather than at midtransition. Moreover, these variance maxima coincide with times when sea level was 40% of its value during the last glacial maximum, i.e., −50 ± 4 m (Fig. 7), indicating threshold behavior. This agrees with previous studies suggesting that a minimum amount of continental ice is required to sustain prominent climate fluctuations on millennial time scales (Oppo et al., 1998; Chapman and Shackleton, 1999; McManus et al., 1999; Schulz et al., 1999). The range for this threshold results from the uncertainty of sea level at the last glacial maximum (between 121 ± 5 m (Fairbanks, 1989) and 130–135 m (Yokoyama et al., 2000)) and is in accordance with the value derived from ice-core data for the last 100,000 yr (Schulz et al., 1999). The variance maximum at 315,000 yr is seemingly at odds with this inferred SPECMAP-based threshold. However, according to Berger et al. (1996) sea level at this time may have been 18 m lower than indicated by the SPECMAP series, bringing this variance maximum in line with our estimated threshold value. Of the five glacial terminations only Terminations III and II, the glacial-to-interglacial transitions from marine isotope stages 8 to 7, and 6 to 5, respectively, are characterized by variance maxima. Although this suggests different dynamical behavior across glacial-to-interglacial transitions, future studies are needed to confirm this pattern.

Prominent variance minima, indicating low-amplitude millennial-scale climate variability, are generally associated with peak interglaciations (Fig. 7), that is, intervals with small continental ice mass. The two variance minima at 53,000 and 164,000 yr seem to contradict our estimated threshold (Fig. 7). However, radiometrically dated corals (Chappell et al., 1996) indicate that sea level at ~50,000 yr was indeed in the range of our threshold. Further investigations are required to test if the same holds true for the relatively warm interval within glacial marine isotope stage 6 at 164,000 yr. During glacial maxima, millennial-scale climate variability is low, although higher than during peak interglaciations, which corroborates the observations of McManus et al. (1999) and Schulz et al. (1999).

In contrast to findings from the North Atlantic region (Chapman and Shackleton, 1999; McManus et al., 1999; Schulz et al., 1999; this study) the nonexistence of an ice-volume threshold for high-amplitude millennial-scale climate variability in the subtropical western Atlantic has been recently inferred on the basis of a planktic oxygen isotope record, which covers only the interval from 69,000 to 144,000 yr (Oppo et al., 2001). However, applying the same signal processing methods as we used to the record from the subtropical Atlantic reveals a variance maximum at approximately 85,000 yr (not shown), which is thus coeval to the occurrence of the first large-amplitude Dansgaard–Oeschger interstadial (DO 21) in the GISP2 ice-core record (Stuiver and Grootes, 2000) and coincides with a brief sea-level drop below our inferred threshold (cf. Fig. 7). Accordingly, the record from the subtropical Atlantic analyzed by Oppo et al. (2001) is consistent with the existence of an ice-volume threshold.
FIG. 7. Ties between millennial-scale variance (center) of the red–green color time series and sea level. Relative sea level is derived from the normalized SPECMAP oxygen isotope record (Imbrie et al., 1984; Martinson et al., 1987) with 0% corresponding to the last glacial maximum value (for clarity shown twice; top/bottom). Variance maxima coincide with times of either sea-level rise (ice decay; denoted by D) or sea-level drop (ice growth; denoted by G), as indicated by the dotted lines between the two upper records. An exceptional maximum occurs at 315,000 yr (short dashed line), when SPECMAP-derived sea level is probably overestimated (see text for details). Variance minima are tied to times with sea level above a threshold of approximately 40% of the last glacial maximum value (long dashed line), as indicated by the dotted lines between the two lower records. Two apparent exceptions occur at 53,000 and 164,000 yr (short dashed lines), when SPECMAP-derived sea level is probably underestimated (see text for details).

CONCLUSIONS

A red–green color record from Northeast Atlantic deep-sea sediments reveals variations in the amplitude of millennial-scale variability during the past 500,000 yr. Changes in red–green color intensity are probably linked to varying input of reddish terrigenous material by ice rafting, which in turn is closely connected to climate variations on sub-Milankovitch time scales.

Using sea level as proxy for continental ice mass, our results indicate that large-amplitude climate variations are restricted to times when continental ice volume exceeds a threshold, equivalent to sea level at approximately 40% of its value during the last glacial maximum. This value is almost indistinguishable from an earlier estimate, derived for the last 100,000 yr based on ice-core data. It is remarkable and favorable for future modeling studies that a single threshold value apparently controlled the cessation of large-amplitude millennial scale climate variations over the past five glacial-to-interglacial cycles.

Once continental ice mass exceeds the threshold value, maxima of millennial-scale climate variability are tied to times of
changes in ice mass. In contrast, relatively stable ice volume during glacial maxima goes along with considerable dampening of climate variability. The inferred relationship between ice volume and "agility" of the climate system to undergo short-term fluctuations seems to hold throughout the past 500,000 yr.

ACKNOWLEDGMENTS

The authors thank W. L. Balsam and W. F. Ruddiman for their thoughtful reviews, which helped to improve the manuscript. The work was supported by the Deutsche Forschungsgemeinschaft (J.H., H.B.) and EU Project "Climate Variability—How Unusual Is the Holocene?" (MS).

REFERENCES

Jung, S. J. A. (1996). Wassermassen austausch zwischen NE-Atlantik und Nordmeer während der letzten 300.000/80.000 Jahre im Abbild stabiler O-C-Isotope. Reports SFB 313, University of Kiel. [In German]

