Solar modulation of North Atlantic central Water formation at multidecadal timescales during the late Holocene

Audrey Morley a,b,⁎, Michael Schulz a, Yair Rosenthal b, Stefan Muitza a, André Paul a, Carsten Rühlemann c

⁎ Corresponding author at: Institute for Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers the State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901-8525, USA. Tel.: +1 732 932 6555; fax: +1 732 932 8578.
E-mail address: morley@marine.rutgers.edu (A. Morley).

ARTICLE INFO

Article history:
Received 30 November 2010
Received in revised form 3 May 2011
Accepted 22 May 2011
Available online 14 June 2011

Editor: P. DeMenocal

Keywords:
benthic Mg/Ca paleothermometry
North Atlantic central water formation
Late Holocene
solar minima — LIA
NAO
climate signal transfer

ABSTRACT

Understanding natural climate variability in the North Atlantic region is essential not only to assess the sensitivity of atmosphere–ocean climate signal exchange and propagation, but also to help distinguish between natural and anthropogenic climate change. The North Atlantic Oscillation is one of the controlling modes in recent variability of atmosphere–ocean linkages and ice/freshwater fluxes between the Polar and North Atlantic Ocean. Through these processes the NAO influences water mass formation and the strength of the Atlantic Meridional Overturning circulation and thereby variability in ocean heat transport. However, the impact of the NAO as well as other forcing mechanisms on multidecadal timescales such as total solar irradiance on Eastern North Atlantic Central Water production, central water circulation, and climate signal propagation from high to low latitudes in the eastern subpolar and subtropical basins remains uncertain. Here we use a 1200 yr long benthic foraminiferal Mg/Ca based temperature and oxygen isotope record from a ~900 m deep sediment core off northwest Africa to show that atmosphere–ocean interactions in the eastern subpolar gyre are transferred at central water depth into the eastern boundary of the subtropical gyre. Further we link the variability of the NAO (over the past 165 yrs) and solar irradiance (Late Holocene) and their control on subpolar mode water formation to the multidecadal variability observed at mid-depth in the eastern subtropical gyre. Our results show that eastern North Atlantic central waters cooled by up to ~0.8 ± 0.7 °C and densities decreased by αθ = 0.3 ± 0.2 during positive NAO years and during minima in solar irradiance during the Late Holocene. The presented records demonstrate the sensitivity of central water formation to enhanced atmospheric forcing and ice/freshwater fluxes into the eastern subpolar gyre and the importance of central water circulation for cross-gyre climate signal propagation during the Late Holocene.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The state of the North Atlantic Oscillation (NAO) in combination with subpolar gyre dynamics (Hatun et al., 2005) determines regional sea surface heat loss and winter convection by modulating both the variability in the westerly wind stress and fresh water budgets in the North Atlantic (Curry and Mauritzen, 2005; Furevik and Nilsen, 2005; Johnson and Gruber, 2007; Marshall et al., 2001a; Marshall et al., 2001b), and thereby, influencing the intensity of the deep overturning branch of the Atlantic Meridional Overturning Circulation (AMOC) in the Nordic and Labrador Seas (Boessenkool et al., 2007; Dickson et al., 2002; Dickson et al., 2000; Eden and Jung, 2001; Hatun et al., 2005; Shindell et al., 2001b). However, the region with the strongest response to NAO-modulated wind-stress is in the subpolar basin south of Iceland, where westerlies are up to 8 m s−1 stronger during extremely positive NAO (+) years (Hurrell, 1995) due to the enhanced pressure gradient between the Icelandic Low and Azores High and result, via sea surface heat loss, in sea surface temperatures (SST) several tenths of degrees (~0.7 °C) colder than on average (Furevik and Nilsen, 2005; Johnson and Gruber, 2007). Subpolar Mode Water (SPMW) forms in this region (Fig. 1) via subduction (Tomczak and Godfrey, 1994) and after formation comprise a large fraction of Eastern North Atlantic Central Water (ENACW) (Jesinl, 1936; Poole and Tomczak, 1999) and after formation comprise a large fraction of Eastern North Atlantic Central Water (ENACW) (Jesinl, 1936; Poole and Tomczak, 1999). A positive NAO phase shift is thus associated with cooler and fresher ENACW (Johnson and Gruber, 2007; Pérez et al., 2000).

The formation, subduction and subsequent southward flow of ENACW at densities between cθ = 27.3 and 27.6 kg/m3 (Levitus, 1989; McCartney and Talley, 1982), into the STG is well established (Keffer, 1985; Levitus, 1989; McCartney and Talley, 1982; McDowell et al., 1982). ENACW formation and circulation provide therefore a direct link between both gyres and offer the opportunity to investigate the influence of atmospheric–ocean linkages in the
subpolar North Atlantic on central water formation and cross gyre climate signal propagation.

In addition to the NAO, recent numerical model simulations (Ammann et al., 2007; Swingedouw et al., 2010) and paleoproxy reconstructions (Knudsen et al., 2009) as well as the re-analysis of published proxy data (Lockwood et al., 2009; Lohmann et al., 2004) provide support for the existence of ocean–atmosphere linkages over the subpolar basin that communicate and amplify relatively small radiative changes in total solar irradiance (ΔTSI) (Lean, 2010; Shindell et al., 2001b) into a climate signal extending beyond the northeastern Atlantic region at multidecadal timescales. The NAO and possibly ΔTSI are thus two important factors controlling recent and long-term variability in atmosphere–ocean linkages over the north Atlantic at multidecadal timescales.

However, the impact of multidecadal variations in NAO mode and ΔTSI on meridional climate signal transfer in the North Atlantic remains uncertain for the Late Holocene. The lack of evidence for past and present records assessing atmospheric and mid-depth ocean linkages is due to the scarcity of high resolution, undisturbed, and well-dated marine records (Sicre et al., 2008), and a focus on SST proxies in the recent literature, rather than proxies for bottom water temperatures (Katz et al., 2010) needed to reconstruct central water properties.

In the present study we investigate oceanic central water connections between mid-depth subpolar and subtropical latitudes. We present a high resolution 1200-yr long paleotemperature and stable isotopic record based on benthic foraminifera collected at 900 m depth from the northwest African continental shelf in the eastern boundary of the STG thus providing new insights into natural mid-depth climate signal propagation. In particular, we discuss two hypotheses on atmospheric mid-depth oceanic linkages and their relationship to NAO and ΔTSI variability at multidecadal timescales. The first hypothesis is that mid-depth cooling in the eastern boundary of the STG is caused by enhanced Ekman pumping resulting in a shoaling of the local thermocline in conjunction with positive NAO years (Curry and McCartney, 2001). A shoaling at 900 m depth may then allow the incursion of relatively cooler and fresher Antarctic intermediate water (AAIW) to result in colder and fresher mid-depth temperatures in the eastern STG. The second hypothesis proposes that colder mid-depth temperatures in the eastern STG originate from the subpolar gyre and represent the formation of colder SPMW and ENACW during positive NAO years that are subducted and transported underneath the North Atlantic Current into the STG (Keffer, 1985; Levitus, 1989; McCartney and Talley, 1982; McDowell et al., 1982); (Fig. 2).

2. Materials and methods

2.1. Core location

During METEOR Leg M45 in 1999, gravity core GeoB6007-2 and multicore GeoB6007-1 were collected from the eastern boundary of...
of σθ depth between 900 and 1300 m, a salinity minimum at density ranges of 2.2. Paired Mg/Ca mid-depth STG ventilation. High resolution, multi-decadal linkages between SPMW variability and GeoB6007-2 and GeoB6007-1 are thus ideally located to investigate depth (Bamberg et al., 2010; Kim et al., 2007; Kuhlmann et al., 2004). Three consistency standards of Mg/Ca concentrations of 1.10, 2.40 and 3.70 were measured at the Stable Isotope Laboratory of the University of Bremen using a Finnigan MAT 251 mass spectrometer equipped with a Sector Field Inductively Coupled Plasma Mass Spectrometer (Thermo Elemental) following the methods outlined in Rosenthal et al. (2003). Mg/Ca ratios, using a modified reductive, oxidative cleaning protocol (Barker et al., 2003; Rosenthal et al., 1997) and analyzed for Mg/Ca ratios, using a modified reductive, oxidative cleaning protocol (Barker et al., 2003; Rosenthal et al., 1997) and analyzed at Rutgers Inorganic Analytical Laboratory using a Sector Field Inductively Coupled Plasma Mass Spectrometer (Thermo Elemental XR) following the methods outlined in Rosenthal et al. (2003). The long-term analytical precision of Mg/Ca ratios is based on three consistency standards of Mg/Ca concentrations of 1.10, 2.40 and 3.70 mmol mol⁻¹. Over the course of this study, the precision for the consistency standards was 1.6, 1.2 and 1.2% RSD (relative standard deviation) respectively. For paleotemperature reconstructions the equation Mg/Ca = 0.49 T (°C) was used (Rosenthal et al., 2011). Standard-error estimates for paleotemperature, the oxygen isotopic composition of seawater (δ¹⁸Osw), salinity and density values are ±0.7 °C, ±0.3‰, ±0.7 psu and σθ = ±0.3, respectively. However, modern calculated salinities and densities fall within ±0.30 psu and σθ = ±0.2 based on modern paired Mg/Ca–δ¹⁸Osw measurements of H. Balthica from Cape Ghir (Rosenthal et al., 2011). To calculate error margins on temperature, δ¹⁸Osw and salinity, we followed standard error propagation calculations for a quadratic paleotemperature equation (Shackleton, 1974), including measurement and calibration errors, uncertainties in the freshwater end-member of the modern δ¹⁸Osw-salinity relationship, and uncertainties in estimates for global ice-volume changes (Schmidt, 1999). We assumed a constant δ¹⁸Osw–salinity relationship for down-core salinity reconstructions. Finally, δ¹⁰O and δ¹³C core-top records were not found to be significantly correlated at the α = 0.05 significance level (r = 0.11, n = 27, p = 0.95, t-test = 0.069, critical t = 2.06). For all regression analyses, time series were linearly interpolated using the lower resolution of the two series as common resolution. The significance of all correlations used in this study is tested by determining the t-score on the slope of the regression between two parameters at the 95% confidence interval. If the t-score between two parameters is larger than the critical t value, the slope of the regression is statistically different to zero and the correlation between the arrays is significant.

2.2. Paired Mg/Ca–δ¹⁸Osw measurements

We reconstructed central water water temperature during the Late Holocene by measuring Mg/Ca and oxygen isotopic values (δ¹⁸O) on the benthic foraminifera Hyalinea balthica. H. balthica is a shallow infaunal benthic foraminifera living within the top 1.5 cm of oxygenated, nutrient rich, fine grained sediments (Schmiedl et al., 2000, Villanueva Guimerans and Cervera Currado, 1999). Off the NW African coast H. balthica tests often cluster together with Bulimina marginata, a species typically associated with perennially productive areas and high chlorophyll concentrations that indicate a high organic-matter supply (Eberwein and Mackensen 2006). The isotopic oxygen and carbon compositions (δ¹⁸O and δ¹³C) of the foraminiferal shells were measured at the Stable Isotope Laboratory of the University of Bremen using a Finnigan MAT 251 mass spectrometer equipped with an automatic carbonate preparation device and reported against Vienna PDB (VPDB). Internal precision, based on replicates of a limestone standard, was better than ±0.07‰. Up to 25 (mean: 20 individuals) H. balthica tests from the 250–350 µm size fraction were analyzed for Mg/Ca ratios, using a modified reductive, oxidative cleaning protocol (Barker et al., 2003; Rosenthal et al., 1997) and analyzed at Rutgers Inorganic Analytical Laboratory using a Sector Field Inductively Coupled Plasma Mass Spectrometer (Thermo Elemental XR) following the methods outlined in Rosenthal et al. (1999). The long-term analytical precision of Mg/Ca ratios is based on three consistency standards of Mg/Ca concentrations of 1.10, 2.40 and 6.10 mmol mol⁻¹. Over the course of this study, the precision for the consistency standards was 1.6, 1.2 and 1.2% RSD (relative standard deviation) respectively. For paleotemperature reconstructions the

<table>
<thead>
<tr>
<th>Lab ID*</th>
<th>Core</th>
<th>Depth (cm)</th>
<th>Species (planktic)</th>
<th>Radiocarbon Age ±1σ error (yr BP)</th>
<th>Calibrated Age WMA (cal. kyr BP)</th>
<th>2σ range (cal. kyr BP)</th>
<th>Calibrated Age WMA (cal. yr AD)</th>
<th>2σ range (cal. yr AD)</th>
<th>Reference for original radiocarbon dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS-73552</td>
<td>GeoB6007-1</td>
<td>4</td>
<td>Mixed species</td>
<td>2.65±135</td>
<td>0.106</td>
<td>x</td>
<td>0.067–0.142</td>
<td>1842</td>
<td>1808–1888</td>
</tr>
<tr>
<td>OS-72997</td>
<td>GeoB6007-1</td>
<td>23</td>
<td>Mixed species</td>
<td>285 ±35</td>
<td>Modern</td>
<td>0.975</td>
<td>0.889–1.024</td>
<td>973</td>
<td>926–1061</td>
</tr>
<tr>
<td>KIA 20037</td>
<td>GeoB6007-2</td>
<td>3</td>
<td>Mixed species</td>
<td>1630 ±85</td>
<td>1.29</td>
<td>0.94–1.316</td>
<td>818</td>
<td>634–1006</td>
<td></td>
</tr>
<tr>
<td>KIA 20536</td>
<td>GeoB6007-2</td>
<td>78</td>
<td>Mixed species</td>
<td>1955 ±35</td>
<td>1.206</td>
<td>1.113–1.295</td>
<td>742</td>
<td>655–818</td>
<td></td>
</tr>
</tbody>
</table>

the imprint of the anthropogenic CO2 increase on the marine carbon isotope composition throughout the length of the multicore, exemplified by a sharp decrease in $\delta^{13}C$ values. This decrease reveals the presence of the ‘$\delta^{13}C$ Suess effect,’ indicating the oceanic uptake of isotopically light CO2 released by the burning of fossil fuel since the early 19th century (Keeling et al., 1979). Available reconstructions for total sea surface $\delta^{13}C$ depletion based on corals and sclerosponges from the Caribbean and Florida range between 0.7 and 0.9‰ since the early 19th century (Böhm et al., 2002; Swart et al., 2010). This estimate is consistent with the total decrease of ~0.7‰ observed in the $\delta^{13}C$ record of G. bulloides in GeoB6007-1 (Fig. 3). Considering that the total range of the anthropogenic Suess effect appears to be present in GeoB6007-1 and pre-industrial values are also present in the oldest part of the multicore, the base of GeoB6007-1 cannot be much younger than 1850 AD. This age constraint is consistent with $\delta^{13}C$ records from the subtropical North Atlantic (Böhm et al., 2002) and atmospheric CO2 reconstructions from Law Dome, Antarctica (Etheridge et al., 1996); which provide evidence for a significant decrease in $\delta^{13}C$ in the ocean and increased atmospheric CO2 by 1850 compared to pre-industrial values. The absence of a plateau in the $\delta^{13}C$ record at pre-industrial values (Fig. 3) further constrains the oldest possible date for the core to the early 19th century, before which oceanic $\delta^{13}C$ and atmospheric CO2 values did not significantly vary beyond Late Holocene variability (Böhm et al., 2002; Etheridge et al., 1996). The agreement between the $\delta^{13}C$ age constraint (1800–1850 AD) at the base of the multicorer with the ^{14}C AMS date of 1842 AD ±40 yrs at 23 cm allows us to interpret the paleoceanographic record from GeoB6007-1 with confidence. The age model for GeoB6007-2 determines the start of the Late Holocene record to be at ~1184±105 yrs BP (816±105 yrs AD) (2σ) (Table 1).

4. Results

4.1. Geochemical and statistical analysis on GeoB6007-1

High resolution (1 cm) Mg/Ca measurements on GeoB6007-1 indicate that bottom water temperature (BWT) cooled by 0.7–1.0 °C since ~1842 AD to reach modern bottom water values of 7.6–7.8 °C (Fig. 4). These results from the core top sample are consistent with measured BWT at 900 m depth of 7.8–7.9 °C in 1993 and 1997 (Knoll et al., 2002). The good agreement between reconstructed and measured BWTs shows that Mg/Ca ratios from modern H. balthica tests reliably record in situ water temperatures at the core site.
On multidecadal timescales the cross-correlations between BWT, salinities and the NAO index (Jones et al., 1997) are highest when all records are filtered using a windowed Fourier transform approach with cut-off periods of 30 and 60 yrs. At these periods, we consistently note that shifts from relatively warm to colder bottom waters occurred shortly after NAO shifts from negative to positive phases (Fig. 5). The significant correlation between BWT and δ18Osw (r = 0.52, n = 23, p < 0.05) over the past 165 yrs further shows that a bottom water cooling generally concurred with a freshening at 900 m depth (Fig. 5). The highest cross-correlations between the NAO index and δ18Osw occur when the NAO index leads δ18Osw by 1 cm (r = 0.65, n = 22, p < 0.05) which would correspond to about a decade if the variations on surface reservoir ages associated with the dating uncertainties could be neglected. Similarly the correlation between NAO and BWT is also strongest when the NAO leads BWT by a decade. Only for the most recent samples (~1980’s onward) the correlation between BWT and NAO appears to break down, resulting in a weaker and less significant overall correlation between the two parameters (Fig. 5). When the top 3 samples are removed the correlation is significant (r = 0.66, n = 19, p < 0.05). BWT and δ13C values do not cross-correlate at these frequencies, neither in phase nor at an offset to each other. However, δ13C values and the NAO index cross-correlate significantly in phase with each other (r = 0.41, n = 23, p < 0.05).

Additionally we compare a high resolution subpolar SST record with our BWT and δ18Osw results as well as with the NAO index. This record based on fossil diatom assemblages and collected by Miettinen et al. (2010) from the eastern flank of the Gardar drift (56°N, 28°W) provides SST data from the formation region of SPMW over the past 220 yrs (Fig. 4). A strong correlation exists between the subpolar SST and the NAO record (r = 0.81, n = 22, p < 0.05) when both records are in phase with each other at multidecadal timescales (Fig. 5). Similar to the correlation between BWT and the NAO index, the cross-correlation between BWT and subpolar SST is most significant when SST and BWT are offset by about a decade (r = 0.56, n = 22, p < 0.05).

Finally, we plot temperature and salinity results among equal density lines on a local temperature–salinity plot (Fig. 6). The results show that the lightest densities recorded over the past 165 yrs occurred in the late 1970’s and early 1930’s (σθ ≈ 27.5), two periods that correspond to NAO (+) years while heaviest densities occurred during the late 1950’s and 1860’s (σθ ≈ 27.7), which correspond to NAO (−) years (Fig. 6).

4.2. Geochronological and statistical analysis on GeoB6007-2

Mg/Ca measurements from gravity core GeoB6007-2 indicate a long-term, step-like cooling of 0.8–1.0 °C throughout the record (Fig. 7). Multidecadal intervals of colder BWT are centered between 1250–1350 AD, 1475–1550 AD and 1625–1725 AD and intervals of warmer BWT occurred between 850–900 AD, 1100–1200 AD and 1400–1450 AD. To test the multidecadal relationship among BWT, δ18Osw and ΔTSI (Steinhilber et al., 2009) over the past 1200 yrs, all records were bandpass-fitted using cut-off periods of 60 and 100 yrs (Fig. 8) in order to focus on the multidecadal solar Gleissberg cycle (70–90 yrs) (Reid, 1991). Similar to the multicore results, the δ18Osw and BWT records from GeoB6007-2 correlate well with each other (r = 0.56, p < 0.05, n = 98) at these frequencies and are most significant (r = 0.69, p < 0.05, n = 97) if δ18Osw leads BWT by about a decade. These results show that a cooling in BWT occurred in phase with or shortly after a freshening during the past 1200 yrs. The correlation between BWT and ΔTSI is also significant (r = 0.53, p < 0.05, n = 96) when ΔTSI leads BWT by ~20 yrs (2 cm). This cross-correlation indicates that cool episodes recorded in the BWT record are correlated with solar minima. The correlation between ΔTSI and δ18Osw is most significant (r = 0.38, p < 0.05, n = 97) when ΔTSI leads δ18Osw by ~10 yrs (1 cm), in agreement with the offset between BWT and δ18Osw. We stress that the offset between BWT and δ18Osw is robust since both measurements were taken from the same sample. All other offsets remain within the uncertainties associated with our and the ΔTSI age model.

![Fig. 5. Variability: a) Comparison of the multi-decadal bandpass filters (30 and 60 yr cut off periods) for the instrumental NAO index (Jones et al., 1997) subpolar gyre (SPG) sea surface temperatures (Miettinen et al., 2010) with the variability in bottom water temperatures and δ18Osw from GeoB6007-1. All records are normalized between 0 and 1. Both the NAO index and δ18Osw have been shifted by 1 cm to account for the identified offset. b) Comparison of the multi-decadal bandpass filters (30 and 60 yr cut off periods) for both the instrumental NAO index (Jones et al., 1997) and the reconstructed NAO index (Cook et al., 2002) (offset by ~30 yrs from the GeoB6007-2 age model) with reconstructed bottom water temperatures from both GeoB6007-1 and GeoB6007-2. Also shown are known intervals of positive (gray bars) and negative (white bars) phase shifts of the NAO index in panel a) and b).](image)

![Fig. 6. GeoB6007-1 paleodensity reconstruction: Temperature and salinity results are plotted along density lines and compared to a local CTD cast (blue) (Knoll et al., 2002). Data points occurring in NAO (+) years are plotted in blue and data points falling into NAO (−) years are plotted in red. The results indicate that densities are generally lighter during NAO (+) years (blue circle) then during NAO (−) years (red circle) over the past 165 yrs.](image)
The $\delta^{13}C$ record from GeoB6007-2 yields no significant correlation with the BWT record, neither in phase ($r = 0.04$, $p = 0.61$, $n = 98$) or at an offset, and thus agrees with the results from the multicore record. Further, we cross-correlated a local alkenone-based SST record from Cape Ghir (McGregor et al., 2007) with the benthic $\delta^{13}C$ data and obtained a significant correlation ($r = 0.65$, $p < 0.05$, $n = 96$) (Fig. 8). Finally, reconstructed density profiles at the core site (Fig. 9), show a tendency towards lighter density surfaces during minima of ΔTSI ($\sigma_\theta \approx 27.45$) compared to maxima in ΔTSI ($\sigma_\theta \approx 27.8$) (Fig. 9) throughout the Late Holocene.

5. Discussion

5.1. Multidecadal variability over the past 165 years

Two possible mechanisms may explain the relationship between reconstructed $\delta^{18}O_{sw}$, BWT, and the NAO at GeoB6007-1. First, the depth of the eastern STG thermocline may be related to the NAO. Enhanced northeast trade winds off the Northwest African coast during NAO (+) phases promote upward Ekman pumping and may result in a shoaling of the STG thermocline (Curry and McCartney,
2001). A shoaling at 900 m depth may then allow the incursion of relatively cooler and fresher AAIW at the core site. Alternatively, the covariance between temperature, $\delta^{18}O_{osv}$, and NAO may originate from the north and correspond to the production of cooler and fresher SPMW during NAO (+) years that travel south within ENACW into the eastern boundary of the STG (Fig. 5) (Keffer, 1985; Levitus, 1989; McGregor and Tailey, 1982; McDowell et al., 1982). Here we discuss these two alternatives by combining observations and results from instrumental and reconstructed proxy records from both gyres.

5.2. Thermocline shoaling in the Subtropical Gyre

Driven by the intensification of mid-latitude westerlies, STG water mass circulation is high during positive NAO years. Especially in the western boundary this intensification results in a significant shoaling of the thermocline (100–1200 m) (Curry and McCartney, 2001). This vertical displacement of the thermocline in response to changes in zonally integrated wind stress fields has also been successfully modeled (Sturges et al. 1998, Frankignoul et al. 1997) supporting that the thermocline depth in the western STG is primarily wind forced and linked to NAO phase shifts. However, evidence for a thermocline shoaling in the eastern boundary of the STG at 900 m depth in conjunction with enhanced coastal trade winds during positive NAO years is weak. Curry and McCartney (2001) observed a slight shoaling of the eastern STG thermocline in the upper 300 to 800 m during the 1990s relative to the 1965–1974 time interval (from NAO (−) towards NAO (+)). However, water masses below 800 m did not experience a vertical displacement due to local Ekman pumping. This agrees with earlier observations by Levitus (1989) showing that eastern STG shoaling during NAO (+) phases only occurred on density surfaces between $\sigma_t \approx 26.5$ and 27.3 whereas no significant upward displacement had been recorded below 800 m or $\sigma_t \approx 27.3$. Additionally, several studies indicate that the production and northward extent of AAIW weakened over the past 50 yrs (Curry et al., 2003; Goes et al., 2008), suggesting weaker rather than increased influence of this colder and fresher water-mass at the core site.

The insignificant correlation between the benthic $\delta^{13}C$ and BWT time series throughout GeoB6007-1 suggests that STG thermocline depth variations are not the predominant forcing for temperature and salinity changes at the core site. Similar to other shallow infaunal foraminifera species, *H. balthica* records changes in local oceanic productivity/upwelling in the $\delta^{13}C$ values measured from their shell lattice (Bamberg et al., 2010; McCorkle et al., 1990; Schmiedl et al., 2004; Tachikawa and Elderfield, 2002). An increase in local upwelling off Cape Ghir in conjunction with NAO (+) years will likely enhance sea surface productivity and intensify the availability and decomposition of organic matter at 900 m depth. As a result, steeper dissolved organic carbon gradients are expected to develop within the top centimeters of surface sediments that should result in more depleted $\delta^{13}C$ values recorded in *H. balthica* tests during times of increased upwelling.

The correlation between $\delta^{13}C$ and the NAO index over the past 165 yrs suggests that NAO modulated local trade winds enhanced productivity off the Northwest African coast at multidecadal timescales. However, the insignificant correlation between the BWT and the $\delta^{13}C$ records suggests that NAO-forced upwelling at the sea surface did not result in a shoaling of the thermocline and an incursion of cooler AAIW at the core site.

There is however, no clear correlation between the local alkenone-based SST reconstructions and the NAO index on decadal timescales (McGregor et al., 2007). Instead McGregor et al. (2007) related the recent SST cooling observed over the past 50 yrs to CO$_2$ forced global warming ("Bakun hypothesis"), whereby the global temperature increase enhances the sea surface–land surface temperature gradients, which in turn force enhanced coastal wind intensity and thus upwelling (Bakun, 1990; Narayan et al., 2010). This anthropogenic forcing may have overprinted NAO-modulated SST cooling and may thus explain the lack in correlation between reconstructed SST and NAO at GeoB6008-2. Nevertheless, we suggest that the consistent...
offset between BWT, δ^{13}C and NAO indicates that the NAO signal recorded in BWT reaches the core site with about a decade delay and, most importantly, that NAO induced upwelling and Ekman pumping at Cape Chir does not result in a shoaling of the base of the eastern STG thermocline nor in an incursion of AAIW at the core site.

5.3. North Atlantic Central Water circulation and climate signal propagation

Iselin (1936) originally suggested southward flow and the ventilation of the eastern boundary of the STG by SPMW. In the early 1980’s McCartney and Talley (1982) drew the first mid-depth potential vorticity maps, providing physical evidence for southward flow along density surfaces $\sigma_z = 27.3$ to 27.6 from the SPG into the STG. Moreover, McDowell et al. (1982), Keffer (1985) and Levitus (1989) later confirmed, based on additional observations, that the potential vorticity distribution for this surface allows water parcels to move southward underneath the North Atlantic Current from the region just south of Iceland into the STG to ~30°N before turning southwestward into the southern STG (Fig. 2).

Assuming that these processes occurring over the past 50 yrs have operated during the past millennium, we would expect to observe the following: (a) a significant correlation between subpolar SST and the NAO index over the past 165 yrs (within the age uncertainty of their age models) and (b) the strongest correlation between subtropical BWT and subpolar SSTs should exist at a lag similar to our observed offset between BWT and NAO to account for signal transfer into subtropical latitudes. The consistent offset between BWT and the NAO, subpolar SST, and subtropical δ^{13}C values strongly supports our interpretation whereby the southward flow of ENACW and ventilation of the STG are NAO-modulated via SPMW formation.

The question remains whether NAO-induced surface water cooling and freshening of SPMW also weakens the production of ENACW, and whether the signal of this weakening is transferred to subtropical latitudes via North Atlantic central water circulation. Paleodensity estimates (Fig. 6) indicate that even though some of the changes between NAO (+) and NAO (−) years are density-compensated (occur along a single density surface), the lightest densities recorded over the past 165 yrs occurred during two periods that correspond to NAO (+) years whereas heaviest densities occurred during periods which correspond to NAO (−) years (Fig. 6). These results suggest that similar to North Atlantic Deep Water production in the Nordic Seas and Iceland Scotland Overflow Water strength (Boesenkool et al., 2007; Eden and Jung, 2001), ENACW formation south of Iceland weakens during NAO (+) phase shifts.

5.4. Atmosphere–ocean solar signal transfer from the SPG into the mid-depth STG

The significant correlation between the benthic δ^{13}C (H. balthica) and local SST variability (McGregor et al., 2007) at multidecadal timescales suggests that similar to the past 165 yrs, sea-surface processes off Cape Chir were locally controlled by the easterly trade winds during the past 1200 yrs. The clear decoupling of δ^{13}C and overlying SST signals from BWT and ΔTSI (Fig. 8) further supports that BWT at 900 m depth are modulated by SPG atmosphere–ocean processes and not by an incursion of AAIW. The decoupling between surface and central water processes becomes evident especially during the main phase of the Little Ice Age from 1300 to 1850 AD. During the Little Ice Age, the variability in ENACW temperatures significantly correlates with the reconstructed NAO index (Cook et al., 2002) ($r = 0.64, n = 35, p < 0.05$), linking cold ENACW with NAO (+) phase shifts, similar to the results observed over the past 165 yrs (Fig. 5). The Cook et al. (2002) NAO index combines numerous records from the eastern, western, and polar North Atlantic realm and thus provides a comprehensive signature of past NAO cycles on the North Atlantic region. The correlation of past ENACW temperatures with a European based NAO reconstruction (Trouet et al., 2009) is significant ($r = 0.35, n = 75, p < 0.05$), but weaker.

On longer timescales, assuming that similar to recent multidecadal processes, the recorded BWT at the core site reflects subpolar atmosphere–ocean processes, the significant correlation between colder BWT and ΔTSI minima (Fig. 8) suggests that subpolar surface waters were colder and fresher during solar minima. In line with this interpretation, a suite of established proxy records covering polar-, subpolar- and the mid-latitudes of the Northeast Atlantic realm provides evidence for enhanced atmospheric circulation during solar minima of the LIA (Jackson et al., 2005; Keigwin, 1996; Kreutz et al., 1997; Meeker and Mayewski, 2002). At polar latitudes the high resolution sodium (Na^+) record from GISP2 in central Greenland, a proxy for the strength of the Icelandic Low (Mayewski et al., 1997, Meeker and Mayewski, 2002), displays sharp increases in Na^+ and thus intensifications of the Icelandic Low during solar minima of the LIA. Compared to ENACW temperatures from GeoB6007-2 (Fig. 8) we note a strong correlation ($r = 0.53, n = 90, p < 0.05$) between the strength of the Icelandic Low and the formation of colder ENACW at multidecadal timescales (60–100 yr) especially from AD 1100 to 1800. Additional evidence for enhanced winter storminess during the LIA, has also been recorded in western Norway where the growth of maritime glaciers indicates enhanced winter precipitation (~25%) in combination with lowered winter temperatures (~0.5 °C) during the LIA (Nesje et al., 2008; Rasmussen et al., 2010). Numerous coastal storm deposits in Ireland (Wilson et al., 2004; Wintle et al., 1998), Scotland (Outer Hebrides) (Dawson et al., 2004; Gilbertson et al., 1999), and Sweden (Jong et al., 2006) as well as loess deposits from southern Iceland (Jackson et al., 2005) dating to the LIA provide further evidence for intense storms passing over Northern Europe during this period. Evidence for colder sea surface temperatures in the northeastern SPG during solar minima of the LIA is also given by a suite of subpolar SST and drift ice studies, that support a positive relationship between solar forcing and subpolar SST’s (Jiang et al., 2005; Lohmann et al., 2004; Moros et al., 2006; Ran et al., 2010; Sicre et al., 2008) similar to observations made during recent NAO (+) phase shifts (Nesje et al., 2008). The tendency towards lighter density surfaces during solar minima ($\sigma_z \approx 27.45$) compared to solar maxima ($\sigma_z \approx 27.8$) (Fig. 9) additionally supports cooler and lighter sea surface conditions during the LIA.

The discussed high latitude atmospheric (Greenland) and sea surface temperature records from the northeastern SPG as well as coastal records from Northern Europe are apparently at odds with a NAO (−) like structure that has been put forward by several GCM studies (Mann et al., 2009; Shindell et al., 2001a) and some (but not all see Cook et al., 2002) reconstructions of the NAO index during the LIA (Trouet et al., 2009) and thus stand in sharp contrast with the assumption that the westerly airflow was reduced during the LIA especially over the subpolar North Atlantic and Northern Europe (Mann et al., 2009; Richter et al., 2009; Shindell et al., 2001a; Trouet et al., 2009). In support of the link between solar minima and NAO (−) phase shifts, Thorlalley et al. (2009) record a thermocline warming in the northeastern SPG between 1300 and 1800 AD. In line with SPG dynamics during NAO (−) phase shifts Thorlalley et al. (2009) associate the subsurface warming with a northwestern retreat of the gyre and an increased influence of warm Atlantic waters into the southeastern SPG during the coldest interval of the LIA. A distinct sea surface warming recorded in Fenì Drift between AD 1600 and 1800 supports Thorlalley’s interpretation (Richter et al. 2009). However, several sea surface investigations from the Gulf of Mexico and Caribbean Sea (Goodkin et al., 2008; Haase-Schramm et al., 2003; Richey et al., 2009), provide evidence for cooler Atlantic waters at the source of the North Atlantic Current (NAC). Colder SST’s in the Gulf of Mexico and Caribbean Sea are not only consistent with an increase in the north–south sea-level pressure gradient and NAO (+) phase shifts,
but would also result in colder Atlantic waters within the NAC. Although these records are seemingly at odds with the results provided by Thornalley et al. (2009) and Richter et al. (2009) we would like to note that NAO induced changes in the subtropics may be overprinted further downstream by dynamical changes in the SGP, affecting the freshwater budget of SGP surface waters.

A possible explanation for the apparent discrepancy in the data may be provided by simulations of the cyclone-resolving Climate Community System Model (CCSM) coupled ocean–atmosphere general circulation model for the Maudmer Minimum (LIA) (Raible et al., 2007). These authors propose that major mid-latitude blocking anticyclones reduce cyclone frequency during the LIA consistent with NAO (−) phases. However the intensity of cyclones is increased when anticyclones break down. The enhanced storminess recorded by the ice core, sea surface, and coastal proxies may therefore be a result of more intense, rather than more frequent, winter storms during the LIA (Raible et al., 2007; Scourse et al., 2010).

Additionally, seasonal changes should be considered, G. bulloides and the thermocline dweller Globorotalia inflata used to reconstruct surface and thermocline temperatures in the northeastern SGP (Richter et al., 2009; Thornalley et al., 2009) are early to mid-summer bloomers, with largest abundances from June to August and lowest during the winter months (Dez–Mar) (Chapman, 2010). The downcore temperature records based on these species are thus most likely biased towards summer temperatures. Luterbacher et al. (2004) proposed that most of the cooling associated with the LIA occurred during winter and spring while summer temperatures did not depart from the 20th century average. Accordingly, the relative thermocline warming recorded in the northeastern SGP may represent a seasonal response pattern of the SGP, or in the time of foraminiferal blooms during the LIA. The regionally and possibly seasonally different response patterns of sea surface, subsurface, coastal and atmospheric records to Late Holocene climate forcing illustrate that the climate signatures associated with solar variability during the LIA are more complex than often assumed in the literature and that it may not be possible to generally associate them with either NAO state.

5.5. Central Water cooling over the past 165 yrs

Unlike the pre-industrial BWT–ΔTSI relationship, the ~0.8 °C BWT cooling trend over the past 165 yrs occurs during a period of increasing solar irradiance. This cooling trend (~0.8 °C) suggests that sea surface heat loss due to stronger westerly winds continually increased in the northeastern SGP since the early 19th century. This recent cooling trend is also present in SST proxy reconstructions (Hall et al., 2010; Richter et al., 2009) and in instrumental SST datasets from the northeastern SGP (Xue et al., 2003) all supporting the cross gyre climate signal transfer mechanism suggested in this study. An apparent eastward shift of the center of NAO activity from the southwestern tip of Greenland towards Iceland (Furevik and Nilsen, 2005) may explain the NAO-modulated cooling trend observed in our record. This eastward shift significantly increased wind stress south of Iceland and may thus explain the colder BWT recorded in the STG. The reason for this shift is under debate.

6. Conclusions

The presented data indicate an intricate connection between the subpolar and subtropical gyres at mid-depth during the past 165 yrs and throughout the late Holocene. Further, we conclude that central water temperatures and δ¹⁸Osw values recorded at 900 m depth in the eastern subtropical gyre are largely determined by Subpolar Mode Water formation south of Iceland and not by a thermocline shoaling and an incursion of fresher and cooler Antarctic Intermediate Water. The sensitive response of Subpolar Mode Water formation to changes in atmosphere-ocean processes permits the transfer of climate variability to Eastern North Atlantic Central Waters (Johnson and Gruber, 2007) and thereby links central water circulation with the NAO and solar variability on multidecadal to centennial timescales. These findings stress the importance of atmosphere–ocean linkages in the northeastern subpolar gyre for the spatial and temporal nature of climate signal propagation within the central eastern North Atlantic and underline the importance of cross-gyre central water transport underneath the North Atlantic Current for understanding the full range of meridional heat transfer between the subpolar and subtropical North Atlantic. The strong evidence for either NAO (−) or NAO (+) ‘like’ conditions during the LIA raises important questions about the suitability of characterizing past ocean–atmosphere linkages with modern indices and the need to consider seasonal changes in future Late Holocene investigations.

The possible link between enhanced positive NAO phase shifts and increased greenhouse gas emissions (Furevik and Nilsen, 2005; Shindell et al., 2001a, 2001b), may lead to continued cooling of the eastern subtropical thermocline in the future. Regional numerical model analysis may help to constrain the underlying dynamics involved in cross-gyre climate signal transfer at central water depth and may also help to estimate the regional climate impact of stronger NAO (+) years and a continued thermocline cooling of the eastern subtropical thermocline.

Acknowledgments

We thank M. Segl for stable isotope analyses and at the University of Bremen. We would also like to thank T. Babila and the trace metal geochemistry lab crew at IMCS, Rutgers University as well as Helge Meggers, Nikesh Narayan at the University of Bremen for advice and analytical support, the editor and an anonymous reviewer for thoughtful discussions and comments. The research was funded by the Deutsche Forschungsgemeinschaft INTERDYNAMIC DFG-Schwerpunktprogramm 1266 to AB, AP, SM, CR and MS.

References

Eberwein, A., Mackensen, A., 2006. Regional primary productivity differences off Morocco (NW–Africa) recorded by modern benthic foraminifera and their stable