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Rapid termination of the African Humid Period
triggered by northern high-latitude cooling
James A. Collins 1,2,3, Matthias Prange3, Thibaut Caley4, Luis Gimeno5, Britta Beckmann3, Stefan Mulitza3,

Charlotte Skonieczny6, Didier Roche 7,8 & Enno Schefuß3

The rapidity and synchrony of the African Humid Period (AHP) termination at around 5.5 ka

are debated, and it is unclear what caused a rapid hydroclimate response. Here we analysed

the hydrogen isotopic composition of sedimentary leaf-waxes (δDwax) from the Gulf of

Guinea, a proxy for regional precipitation in Cameroon and the central Sahel-Sahara. Our

record indicates high precipitation during the AHP followed by a rapid decrease at 5.8–4.8 ka.

The similarity with a δDwax record from northern East Africa suggests a large-scale atmo-

spheric mechanism. We show that northern high- and mid-latitude cooling weakened the

Tropical Easterly Jet and, through feedbacks, strengthened the African Easterly Jet. The

associated decrease in precipitation triggered the AHP termination and combined with bio-

geophysical feedbacks to result in aridification. Our findings suggest that extratropical

temperature changes, albeit smaller than during the glacial and deglacial, were important in

triggering rapid African aridification during the Holocene.
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A
wide range of studies (e.g., refs. 1, 2) have shown that most of
tropical Africa north of about 10° S was drier during the Last
Glacial Maximum (LGM; 23–19 ka), relative to today, and

wetter during the early to mid Holocene, which has been defined3, 4

as the African Humid Period (AHP; ca. 11.5–5.5 ka). Abrupt pre-
cipitation changes during the glacial and deglacial are associated with
major changes in the Atlantic Meridional Overturning Circulation
(AMOC) and sea surface temperature patterns2, 5. However, a large
and abrupt aridification, with respect to gradual precessional insola-
tion forcing, has also been documented at some sites during the
Holocene at ~5.5 ka (the AHP termination)3, 4, the causes of which
are currently unresolved. An abrupt AHP termination was originally
thought to have been caused by a collapse of Saharan and Sahelian
vegetation at 5.5 ka6 switching the climate to an arid equilibrium state.
Many vegetation records, however, do not show a collapse4, 7 and the
latest coupled climate models8 suggest the positive biogeophysical
feedback was not strong enough to have triggered an abrupt climate
switch. Complicating the picture, many hydrological records suggest a
gradual (e.g., ref. 7) or time-transgressive9, 10 aridification at the AHP
termination, more in line with a direct and linear response to

precessional insolation forcing. Moreover, some intermediate com-
plexity model simulations (e.g., ref. 11) have difficulty in simulating an
abrupt AHP response and most fully coupled models underestimate
the intensity of precipitation during the AHP9, 12. Overall, it is not
resolved whether a rapid termination of the AHP was ubiquitous and
synchronous at 5.5 ka, why this took place at 5.5 ka, and whether
additional feedbacks or teleconnections were involved.

Precipitation in tropical Africa results from a combination of
factors including the monsoonal on-land flow of moist air, low-level
convergence of air at the intertropical convergence zone and, of
particular importance, the deep vertical motion of air, which over
northern Africa is modulated by the interaction of the Tropical
Easterly Jet (TEJ) and the African Easterly Jet (AEJ)13. These jets
oscillate seasonally and at present reach maximum latitudes of 6–8° N
(TEJ) and 14–17° N (AEJ) in August13. The TEJ maximum wind-
speed is in the upper troposphere at ~150 hPa, while the AEJ max-
imum windspeed is in the mid-troposphere at ~600 hPa. The TEJ
extends from India across the African continent (Fig. 1a, Supple-
mentary Fig. 1) and is maintained by the upper tropospheric tem-
perature gradient between the equatorial latitudes and the relatively

African Easterly Jet
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Fig. 1 Maps of the study area and climatology. a Colours represent mean monthly precipitation (mm) for the months Jun to Oct, the primary wet seasons

for southern Cameroon and the Sahel. Red star marks the study site GeoB4905-4 (2°30.0´ N, 09°23.4´ E) in the Gulf of Guinea. Red dot marks the Gulf of

Aden P178-15P core site4, white dots mark other sites discussed in the text and blue dots mark SST records from Supplementary Table 1. Black arrows mark

position of TEJ and AEJ in summer13. Black box marks the inset. b Zoomed-in map of the study region showing C3–C4 vegetation distribution, rivers and

bathymetry. Yellow dots mark the Douala, N’djamena, Niamey and Bangui GNIP stations, and Lake Ossa. Bathymetry shallower than 120m is coloured in

grey. c Monthly precipitation amount and δDp data for N’djamena, Chad and Doula, Cameroon27, highlighting the large seasonal δDp changes in the Sahel

compared to equatorial regions. Error bars represent standard deviation (1σ) of monthly measurements
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warmer subtropics14. A slower TEJ is associated with drier conditions
in these regions, due to reduced upper-level divergence and hence
reduced upward vertical flow13, 15, 16. The AEJ is attributed to the
meridional temperature gradient in the Sahel and a faster AEJ results
in greater moisture export and drier conditions in the western Sahel13,
17. The African rainbelt oscillates across southern Cameroon twice a
year, bringing most precipitation during northern hemisphere
autumn (Sep–Oct–Nov; SON) and some during spring (Mar–Apr–
May; MAM), while northern Cameroon and the Sahel receive pre-
cipitation primarily during summer (Jun–Jul–Aug; JJA; Fig. 1a).

Sedimentary leaf-wax n-alkane δD (δDwax) has been shown to
primarily reflect precipitation δD (δDp) in Cameroon and globally,
and in the tropics is often taken to reflect precipitation amount18.
While biosynthesis of leaf-wax n-alkanes is thought to exert a
constant hydrogen isotope fractionation against leaf water, second-
ary controls on δDwax include relative humidity and vegetation
type13. δDwax from C4 grasses is less sensitive to transpirational D
enrichment in plant leaves, likely due to partial use of unenriched
xylem water in n-alkane synthesis19. Other plant physiological dif-
ferences such as the water source available to the plant and seasonal
timing of leaf-wax biosynthesis may also influence δDwax values

18.
Higher relative humidity is thought to reduce evapotranspirational
isotopic enrichment of leaf and soil waters, so that in the tropics
relative humidity variability tends to amplify the δDwax variability
that is driven by the amount effect18.

Sedimentary δ
13Cwax is often used as an indicator of C3 and C4

vegetation-type changes. African C3 trees, shrubs, herbs and lianas

(n= 45) exhibit a mean (C29 n-alkane) δ
13Cwax value of

−35.7‰± 2.9‰20 while African C4 grasses (n= 38) exhibit a mean
δ
13Cwax value of −21.4‰± 2.0‰21. Much of the catchments of the
Ntem, Nyong and Sanaga Rivers are dominated by C3 trees (Fig. 1b)
22 and this is reflected in surface sediments of Lake Ossa, southern
Cameroon (Fig. 1b), which exhibit a δ

13Cwax value of −35.4‰23.
Conversely, further north, the Sahel-Sahara and much of the Niger
River catchment are dominated by C4 plants (Fig. 1b)22, and this
is evident in marine sediments off West Africa24.

To provide more insights into the AHP termination, we assess
large-scale hydroclimatic changes in Cameroon and the central
Sahel-Sahara using δDwax from a marine sediment core
GeoB4905-4 in the Gulf of Guinea (Figs. 1a, b). We also assessed
δ
13Cwax as an indicator for C3 vs. C4 vegetation type. Our results
indicate high precipitation during the AHP followed by a rapid
precipitation decrease at 5.8-4.8 ka, similar to a record from
northern East Africa4. We show that the rapid precipitation
decrease was likely triggered by northern high-latitude cooling.
The cooling reduced the speed of the TEJ, triggering rainfall
reduction that was amplified by climate feedbacks and resulted in
strong aridification over a relatively short period.

Results
Moisture sources. To assess the likely moisture sources to
present-day southern Cameroon, we performed analyses using
the 3-D Lagrangian model FLEXPART25. The backward airmass
trajectories (Fig. 2a–d) indicate the southeast Atlantic and central
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Fig. 2 Moisture sources for southern Cameroon and northern East Africa. a–d FLEXPART84, 85 backward analyses of air mass trajectory for the period

1980–2015 at 0.25° resolution. The boxed region in southern Cameroon (9° E-14° E and 1° N-6° N) represents the estimated leaf-wax source region for
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(mm day−1). Numbers indicate total seasonal precipitation amount (mm) from this moisture-source delivered to the boxed regions in southern Cameroon
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Sahel-Sahara to be the major moisture sources to southern
Cameroon during the SON and MAM seasons. Forward analyses
for the southeast Atlantic (Fig. 2e–h) and Sahel-Sahara (Fig. 2i–l)
moisture sources reveal the spatial distribution and amount of
precipitation that is generated by the moisture derived from these
two sources. This shows that the southeast Atlantic and Sahel-
Sahara moisture sources contribute 438 mm and 266 mm of
precipitation to southern Cameroon, respectively, for SON sea-
son, and 1492mm and 568 mm over the year.

δDwax and δ
13Cwax variability. We focus on the C29 n-alkane,

denoted as δDwax and δ
13Cwax (Supplementary Notes 1 and 2).

The δ
13Cwax values from GeoB4905-4 are generally low and

display small variability, ranging between −33.5‰ and −30.3‰
(Supplementary Fig. 2). δDwax values have been adjusted for the
effect of ice-volume and vegetation-type changes (Methods
section; Fig. 3a, b), although this has a minor effect on the
climate signal. The adjusted δDwax record (Fig. 3b) displays large
variability and three main transitions. δDwax values were higher
during the LGM (23–19 ka) relative to today. As indicated by
SiZer analysis (Methods section; Fig. 4), this is followed by two
periods of significant δDwax decrease: between 15.9 and 13.9 ka
(the end of Heinrich Stadial 1; HS1) and between 12.5 and 11.5
ka (the end of the Younger-Dryas; Y-D). The mean rates of
change for these two transition periods are 8‰ kyr−1 and 7‰

kyr−1, respectively (Fig. 3c). δDwax values remained low between
11.5 and 5.8 ka, corresponding to the AHP. Between 5.8 ka and
4.8 ka the record shows a significant δDwax increase (Figs. 3b, c
and 4), associated with the AHP termination. In particular, there
is a significant increase at lower bandwidths at 5.3 ka, indicating
a particularly rapid drying at this time (Fig. 4). The mean rate of
change during the AHP termination (5.8 ka and 4.8 ka) is 8‰
kyr−1.

Origin of the δDwax signal. Relatively low δ
13Cwax values (mean

of −32.3‰, range from −33.5‰ to −30.3‰; Supplementary
Fig. 2) over the past 25 kyr suggest that leaf waxes were mainly
derived from C3 vegetation. This agrees with previous work26 that
the catchments of the Ntem, Nyong and Sanaga Rivers were the
main source region of leaf-wax n-alkanes to the core site (Sup-
plementary Note 2). Nonetheless, our data indicates a slightly
higher C4 contribution than Lake Ossa surface sediment
(−35.4‰; ref. 23) especially during the late Holocene. This points
to an additional C4 contribution to the marine sediment that was
probably delivered to the core site as Sahelian-Saharan
dust (from, for example, the Bodélé depression) and/or Niger
River material. Based on linear mixing with the above C3 and C4

end-members, δ13Cwax values over the last 25 kyr would corre-
spond to mean a C4 vegetation contribution of 24%, with a range
between 15 and 41%.
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Fig. 3 δDwax from core GeoB4905-4 in the Gulf of Guinea. a Grey timeseries represents unadjusted δDwax. Error bars are individual analytical uncertainty.
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above. Thick black line is the Ruppert-Sheather-Wand smooth, the optimal smoothing for the data set86. c Rate of change (‰ kyr−1) based on Ruppert-

Sheather-Wand smooth. Blue colours representing periods of wettening, red represent periods of aridification. Red diamonds mark calibrated radiocarbon

age control points. Vertical bars highlight the African Humid Period (AHP), Younger-Dryas (Y-D) and Heinrich Stadials 1 and 2 (HS1, HS2)
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The minor δ
13Cwax variability (Supplementary Fig. 2) suggests

that vegetation type is unlikely to be the main control on δDwax,
particularly for the large magnitude change between 5.8 and 4.8 ka,
when δ

13Cwax shows little change. Rather than changes in
vegetation, the δDwax record reflects changes in δDp. Tropical
δDwax records are commonly interpreted as being controlled by the
amount effect (e.g. ref. 4) with higher δDwax values representing
drier conditions. Given that most leaf waxes originate from
southern Cameroon with a smaller contribution from the Sahel,
they likely reflect mainly southern Cameroon δDp and partly Sahel
δDp. However, the amount effect can operate locally and non-
locally, i.e., δDp from southern Cameroon can reflect the amount
effect ‘upstream’ in the moisture-source region (thus integrating
over a larger area than that of the leaf-wax source region). Given
that annually almost 30% of the moisture in southern Cameroon
originates from the central Sahel-Sahara (Fig. 2), it suggests δDp in
southern Cameroon is significantly affected by hydroclimatic
processes in the Sahel-Sahara. A further consideration is that the
relationship between precipitation amount and δDp

27 is steeper at
sites in the semi-arid regions of the Sahel compared to the
equatorial regions (Supplementary Fig. 3), implying past precipita-
tion changes in the Sahel would cause a larger δDp change than
precipitation changes in southern Cameroon, potentially over-
printing the southern Cameroon signal. Thus, changes in δDwax

likely reflect integrated changes in precipitation amount in both
southern Cameroon and the central Sahel-Sahara.

To understand the upstream signal over time, we investigated
δDp over the last 25 ka using a transient simulation of the
intermediate complexity isotope-enabled climate model iLOVE-
CLIM (Methods section). The transient simulation displays a
similar evolution of atmospheric δDp in southern Cameroon and
the Sahel-Sahara (Supplementary Note 3), but a different
evolution of precipitation amount in the two regions (Supple-
mentary Fig. 4b–e). This suggests that in this model, south-
ern Cameroon δDp is reflecting an integrated precipitation
amount signal from both Cameroon and the central Sahel-Sahara.

Rapid deglacial and Holocene hydrological changes. The Gulf
of Guinea δDwax record suggests slightly drier conditions at the
LGM compared to the late Holocene (Fig. 3b). Cooler conditions

at the LGM would suggest that the magnitude of aridification at
the LGM relative to the late Holocene is likely to be conservative
(Methods section). Drier LGM conditions are in line with most
other hydroclimate records from northern Africa (e.g., ref. 1).
Increased precipitation at the terminations of HS1 and the Y-D
(Fig. 3b) is seen in other records across much of northern
Africa north of ~10° S2. Both rapid increases are attributed to:
CO2-driven deglacial tropical SST increase and atmospheric
warming, increasing the moisture content of the atmosphere and;
to AMOC resumption and northern high-latitude SST increase,
allowing the rainbelt to penetrate further northwards2.

A more surprising finding in our Gulf of Guinea δDwax record
is the rapid aridification between 5.8 and 4.8 ka with a particularly
sharp drop at 5.3 ka (Figs. 3b, c and 4), which exhibits
comparable rate of change and duration to changes at the
termination of HS1 and the Y-D. Although our δDwax implies a
large aridification between 5.8 and 4.8 ka, salinity changes in the
Gulf of Guinea, which reflect Ntem, Nyong and Sanaga River
discharge in southern Cameroon, display a smaller increase
around this time28. This would suggest rapid aridification at the
AHP termination was more prominent in the Sahel-Sahara than
in southern Cameroon.

δDwax records from other regions. The rapid aridification at the
AHP termination is similar to that observed between 5.4 ka and
4.5 ka4 in the Gulf of Aden, northern East Africa (Fig. 5b, c). The
transitions are coeval, within the age uncertainty of the records
(±0.3 kyr between 5.8 and 4.8 ka for the Gulf of Guinea record;
±0.1 kyr between 5.4 ka and 4.5 ka for the Gulf of Aden). The
mean rate of change for the transition period is 5‰ kyr−1 for the
Gulf of Aden record, comparable to the Gulf of Guinea record.
The leaf-wax source region for the Gulf of Aden record mainly
receives rainfall during JJA, and also receives a significant con-
tribution of Sahel-Sahara moisture (Fig. 2i–l), suggesting that the
rapid AHP termination was a feature spanning the latitudes of the
Sahel during the JJA season. Given wetter conditions in the Sahel
and Sahara during the mid-Holocene (e.g., refs. 1, 29), it is plau-
sible that the Sahel-Sahara was a more important moisture source
for Cameroon and northern East Africa during the AHP com-
pared to today.
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Other δDwax records from East Africa sometimes show a
different evolution at the AHP termination, likely attributable to
the seasonality of precipitation and/or moisture-source varia-
bility. Lake Victoria displays a relatively gradual δDwax increase
from the early to late Holocene (Fig. 5d)30: the absence of a rapid
change at around 5.5 ka may be because the main wet season at
this site is during MAM, and thus δDp is unlikely to be influenced
by Sahel-Sahara JJA moisture. Lake Tana (Fig. 5e) displays a rapid
and large magnitude increase at ~8.5 ka, attributed to a reduction
in Congo-basin derived recycled moisture31. This record displays,
however, little δDwax change at 5.5 ka, although sedimentary Ti
does show a major decrease at 5.5 ka32, indicating aridification
and perhaps highlighting complex moisture-source effects on
δDwax at this site. Lake Tanganyika (Fig. 5f) in eastern Central
Africa displays a large and rapid δDwax increase between 5.7 ka
and 4.4 ka33, in line with our record. Lake Tanganyika is located
well south of the Sahel, and receives a minor amount of Sahel-
Sahara moisture (Fig. 2i-l). The rapid δDwax increase may reflect
local aridification, or, given that Lake Tanganyika is also
susceptible to E-W moisture shifts34, may reflect central African
moisture-source changes.

In West Africa, the crater lake Bosumtwi δDwax record
10, was

interpreted as reflecting reduced precipitation between ~9 ka and
5.5 ka, followed by a return to wet conditions at 5.5 ka and then
termination of the AHP at ~3.5 ka (Fig. 5g). Lake Bosumtwi
δDwax disagrees, however, with the Bosumtwi lake-level record,
which was 110 m higher than today and overflowing the crater
rim between 9 ka and 5.7 ka, followed by a lake-level decrease at
some point between 5.7 ka and ca. 2.0 ka10. The lake-level
decrease is thought to have resulted in input of material from the
crater walls, as observed in radiocarbon measurements of the late
Holocene35. Thus, it seems possible that post-highstand
Bosumtwi δDwax may be partly biased by input of pre-aged leaf
waxes, which could explain the difference to the GeoB4905-4
δDwax record. Offshore NW Africa, δDwax records have shown
wet conditions during the AHP; in particular core GC37 displays
aridification at about 5.5 ka9, similar to our record. This was
interpreted as a rapid response at the AHP termination, although
bioturbation was thought to be significant in these lower-
resolution records, making direct comparisons difficult.

Insights from other hydrological proxies. Other proxies from
Africa also sometimes show spatially variable responses at the
AHP termination. The vegetation record of Lake Yoa was inter-
preted as representing a gradual aridification through the Holo-
cene7. Persistence of wet conditions in this region after the AHP
has, however, been attributed to the Tibesti Mountains acting as a
‘water tower’36. Compilations of past hydrology spanning the
Sahel-Sahara have been interpreted as showing a heterogeneous
response, with north-south10 and east-west29 differences in the
timing of aridification. The compilations are, however, partly
based on discontinuous records, that are less well dated compared
to marine records, and include a range of different hydrological
indicators, which together might explain this heterogeneity.
Nonetheless, from our record we cannot rule out that the
northernmost Sahara10 dried earlier than the southern Sahara
and Sahel.

In support of our record, several other proxies provide
additional evidence for a rapid end to the wet conditions of the
AHP in the Sahel-Sahara. The lake-level record of Lake Mega-
Chad displays high levels until ~5.2 ka, when the water balance
rapidly decreased36. In NW Africa, the ODP658C dust record
shows a very abrupt increase at 5.5 ka3, and other dust flux
records show increases at around 4.9 ka37, although we note that
dust may not necessarily be directly related to hydrology. In
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northern East Africa a large increase in the deposition of K-rich
sediment, is evident between ~5.8 and 4.8 ka at Chew Bahir38,
indicating aridification, similar to the drop in Ti at 5.5 ka at Lake
Tana32. Also in northern East Africa, lake levels at Lakes Abhe39,
Zibay Shalla40 and Abiyata41 display major decreases at about 4.5
ka, 5.0 ka and 5.4 ka, respectively. Therefore, overall, a number of
records lend support to the hypothesis of a rapid AHP
termination at about 5.5 ka covering the Sahel-Sahara and
northern East Africa.

The role of biogeophysical feedbacks. Hydroclimate stability in
the Sahel-Sahara during the AHP followed by a rapid aridification
at 5.8–4.8 ka would not be in line with a response to local pre-
cessional insolation forcing, which began to decrease at around 9
ka (Fig. 5a). This raises the question of why climate remained wet
until 5.8 ka and what caused the large-scale response at this time.
Either internal climate feedbacks created a non-linear response to
the external forcing due to a threshold in the system, or there was
a teleconnection driving the rapid aridification beginning at 5.8
ka.

Sahel-Sahara vegetation and soil moisture are thought to exert
a positive feedback effect, i.e., enhancing wetter conditions during
the AHP8. However, these feedbacks are considered too weak to
have caused a tipping point8, and thus would not themselves have
been the initial trigger for the onset of aridification at 5.8 ka.
Nonetheless, we do not rule out that these positive feedbacks
enhanced the rate of aridification at the AHP termination once
underway. Atmospheric dust is also believed to have been an
important feedback in enhancing the wetness during the AHP42,

and thus was potentially another factor enhancing aridification at
the AHP termination.

Models indicate that lakes and wetlands may also constitute a
positive feedback43 via modulation of the regional moisture
balance. The rapid 100 m depth decrease of Lake Mega-Chad at
about 5.2 ka36 would have reduced the lake area from the
maximum estimated extent of 350,000 km244 towards the ‘pre-
industrial’ [1960] value of 25,000 km2, perhaps reducing moisture
contribution and enhancing the rapidity of AHP termination.
Nonetheless, other studies suggest that the positive feedback from
Lake Chad was weak due to the cool lake surface inhibiting deep
convective precipitation45 and thus it also seems unlikely that
lakes and wetlands were the sole trigger for the AHP termination.

An additional potential mechanism invokes tropical SST4. It
was suggested that Indian Ocean SST decreased below a critical
threshold at ~5.0 ka, substantially reducing tropical East African
precipitation. However, SST records from both the western
Indian Ocean (Supplementary Fig. 5a–c) and Gulf of Guinea
(Supplementary Fig. 5d) do not show a significant SST change at
this time, suggesting that tropical SSTs were not the trigger for the
rapid precipitation decrease on the eastern or western sides of the
continent.

Overall, models suggest that vegetation, soil moisture, dust,
lake and wetland feedbacks, were not the critical trigger tipping
the climate towards a drying state. It is possible that the models
are simply deficient in representing these processes. Alternatively,
it is possible that a trigger was needed from further afield within
the climate system, to initiate the onset of feedbacks and the AHP
termination. Because we see rapid aridification on the east and
west sides of Africa (Fig. 5b,c), this trigger was likely
teleconnected to a large-scale atmospheric circulation feature,
such as the TEJ. We suggest that a TEJ slowdown was triggered by
a cooling of the Northern Hemisphere mid- and high-latitudes.

High-latitude cooling triggered the AHP termination. A range
of records from the northern high latitudes including Green-
land46, the Norwegian sea47, 48 and the Fram Strait49, 50 indicate a
rapid drop in summer temperature between ~6.0 and 5.0 ka.
Other records also indicate an increase in Arctic sea ice50, 51 at
about 5.5 ka. Empirical Orthogonal Function (EOF) analysis of
temperature records from Canada and Greenland suggests an
onset of rapid cooling at ~5.0 ka52. We performed EOF analysis of
Holocene alkenone SST records from the Arctic and northeast
Atlantic (Supplementary Table 1, Fig. 1a). Although the overall
trend of the Principle Component 1 from the analysis is one of
gradual insolation driven cooling, it does indicate more rapid
cooling between about 6.0 and 5.5 ka than earlier or later in the
Holocene (Fig. 6a). Rapid north Atlantic cooling at this time may
have been related to an AMOC slowdown between ~6.0 and 5.0
ka53–55 (Fig. 6b). High-latitude cooling may also have been linked
to increased Arctic sea-ice generation, that has been attributed to
sea-level induced flooding of the Laptev Sea shelf at ~5.0 ka49, 56.
Other studies suggested that between 6.0 and 5.0 ka an expanded
polar vortex57 brought winter-like conditions to the mid-lati-
tudes, evident in north America58. Cooling is evident in Europe59

and SSTs just to the north of Africa (Fig. 6c), suggesting that the
cool anomaly expanded from the mid-high latitudes towards
northern Africa with eastern boundary currents.

To investigate how such a northern extratropical cooling
affected African hydrology, we used a high-resolution version of
the fully coupled CCSM3 climate model (Methods section). We
simulated AHP conditions with an early Holocene (EH, 8.5 ka)
control run, and subsequently initiated an extratropical North
Atlantic cooling by a freshwater-induced slowdown of the AMOC
(experiment EHfre). Note that a freshwater perturbation is a
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simple and common method to induce a cooling in the high
northern latitudes and we do not imply a large input of
freshwater at this time. In experiment EHfre, surface temperatures
decrease by 0.5–2.5 °C in the northeastern North Atlantic
compared to EH. The EH simulation clearly shows the TEJ at
~10° N and 150 hPa and the AEJ at ~20° N and 500–600 hPa
(contours in Fig. 7c, d). The simulated EHfre–EH anomaly shows
that the high- and mid-latitude JJA cooling (Fig. 7a, b) reaches
northern Africa. The cool anomaly is evident throughout the
troposphere in the northern Sahara from the western-to-central
(10° E) and eastern (40° E) regions (Fig. 7a, b), acting to reduce
the meridional gradient of upper tropospheric temperature

between the Sahara and the equatorial latitudes. In accordance
with the thermal wind relation, this weakens the TEJ (red shading
in Fig. 7c, d), leading to reduced upper-level divergence. In the
western-to-central region (10° E; Fig. 7c) the slowdown of the TEJ
is particularly pronounced at its anticyclonic poleward flank,
where the upper-level divergence is usually strongest60. This
reduces upward vertical motions in the mid to upper troposphere
at 16–23° N at 10° E and north of 12° N at 40° E (red and orange
regions in Fig. 7e, f) driving a reduction in precipitation at similar
latitudes of the Sahel-Sahara (Fig. 7g, h). In addition to the upper
tropospheric dynamical processes, surface cooling in the Saharan
region is associated with a weakening of the Sahara Heat Low61,
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which reduces the westerly inflow and northward penetration of
low-level moist monsoon winds (Fig. 7c, d) and hence moisture
convergence. Drier conditions are further associated with a
reduced low-level moist static energy and hence a more stable
atmosphere, hampering deep convection61, 62. These mechanisms
strongly agree with previous modern-day model experiments and
instrumental/re-analysis data61–63, although in these experiments,
the main area of drying was located further south in the Sahel and
central Africa61, as would be expected in a situation when the
Sahara is arid. In the model data63 it was found that the changes
in the TEJ and Sahara Low tend to precede the change in
precipitation, suggesting them to be a cause of rather than
response to the change in Sahel rainfall. Additionally, during
aridification, a shift of the soil moisture and meridional surface
temperature gradient has been shown to strengthen the AEJ,
further reducing rainfall across the west and central Sahel17, 64:
thus the AEJ may represent an additional feedback contributing
to the rapid aridification at 5.8–4.8 ka. Furthermore, models
suggest that the high-latitude cooling was enhanced by the
African precipitation decrease65, and this connection may have
contributed to a tipping point behaviour of the two regions.

Discussion
In comparison with the high- and mid-latitude temperature
decrease at the AHP termination, the increase at the AHP onset
was much larger (e.g., ref. 47), yet the magnitude of African
hydrological change was similar (Fig. 3). This might be taken
suggest that high- and mid-latitude temperature only played a
secondary role in controlling African precipitation compared to
local biogeophysical feedbacks. However, other factors including
ice sheet retreat and tropical warming likely had an effect on
African precipitation at the AHP onset, inhibiting a direct com-
parison. Nonetheless, it seems likely8, 42, 43 that vegetation, dust,
lake and wetland feedbacks played a role in amplifying the
hydroclimatic shifts at the AHP termination.

In summary, our findings suggest that the effect of rapid high-
and mid-latitude temperature changes on tropical African
hydroclimate was not restricted to the glacial and deglacial, but
also played a decisive role in triggering the AHP termination.
Teleconnection of high-mid latitude temperatures with the TEJ
reduced JJA precipitation in the Sahel-Sahara, tipping the
hydrological system towards an arid state. Although the high-
latitude temperature changes were relatively small during the
Holocene, the associated initial drying was the required trigger for
vegetation, soil moisture, dust and lake feedbacks that together
resulted in a large and rapid aridification. From these findings, it
appears that future changes in high-latitude SST, in particular
associated with sea-ice changes, may have strong implications for
low-latitude hydroclimate66.

Methods
Sediment core and age model. Marine sediment core GeoB4905-4 was recovered
at 2°30.0´ N, 09°23.4´ E from 1328 m water depth offshore Cameroon67. The age
model of the core is based on 12 radiocarbon ages68, 69 that have been re-calibrated
using the Marine13 curve with a reservoir age of 0.4 ± 0.1 kyr. The age-depth
relationship was constructed using the software BACON 2.270 and represents the
median of 10,000 iterations (Supplementary Fig. 6). The mean age uncertainty (1σ)
over the last 25 ka is± 0.3 kyr.

n-Alkane extraction and purification. Extraction and purification were performed
at MARUM—Center for Marine Environmental Sciences, Bremen. Sediment
samples of 10 ml were taken from core GeoB4905-4 with syringes, which yielded
up to 9 g of dry sediment. Samples were oven dried at 40 °C, homogenised and
squalane internal standard was added before extraction. Organic compounds were
extracted with a DIONEX Accelerated Solvent Extractor (ASE 200) at 100 °C and
1000 psi using a 9:1 mixture of dichloromethane to methanol for 5 min, which was
repeated three times. The saturated hydrocarbon fraction was obtained by elution
of the dried lipid extract with hexane over a silica gel column (mesh size 60)

followed by elution with hexane over AgNO3-coated silica to remove unsaturated
hydrocarbons.

Isotopic analyses. Isotopic analyses were performed at MARUM—Center for
Marine Environmental Sciences, Bremen. n-Alkane δ13C analyses were carried out
using a ThermoFisher Scientific Trace GC Ultra coupled to a Finnigan MAT 252
isotope ratio monitoring mass spectrometer via a combustion interface operated at
1000 °C. Isotope values were calibrated against external CO2 reference gas. The
squalane internal standard yielded an accuracy of 0.4‰ and a precision of 0.2‰
(n= 371). Samples were run at least in duplicate, with a reproducibility of on
average 0.1‰ for the C29 n-alkane. δD values of n-alkanes were measured using a
ThermoFisher Scientific Trace GC coupled via a pyrolysis reactor operated at 1420
°C to a ThermoFisher MAT 253 isotope ratio mass spectrometer (GC/IR-MS). δD
values were calibrated against external H2 reference gas. The squalane internal
standard yielded an accuracy of 1‰ and a precision of 3‰ on average (n= 428).
Samples were analysed at least in duplicate, with an average reproducibility of 1‰
for the C29 n-alkane. Repeated analysis of an external n-alkane standard between
samples yielded a root-mean-squared accuracy of 2‰ and a standard deviation of
on average 3‰. The H3-factor had a mean of 6.00 ± 0.02 and varied between 5.83
and 6.19 throughout analyses.

δDwax adjustments. We adjusted δDwax for ice volume (following e.g., ref. 4) using
a seawater δ18O curve71 and converting to δD assuming a Last Glacial Maximum
(LGM) increase of 7.2‰ (Fig. 3a). We use 7.2‰ rather than 8‰ because sediment
pore water δ18O and δD measurements72 suggest that the glacial δD increase has a
mean value of 7.2‰. We also adjusted the δDwax record for vegetation changes
(e.g., ref. 73) using published fractionation factors (−123‰± 31‰ for C3 trees,
−139‰± 27‰ for C4 grasses; ref.

18). End-member C29 δ
13Cwax values used for C3

and C4 vegetation were −35.7‰ and −21.4‰, respectively. The large uncertainties
reflect different physiology, water source and seasonal timing of synthesis between
plant types. This in turn highlights that a vegetation adjustment distinguishing only
between C3 and C4 may not capture all potential vegetation changes, for example,
between the input of shrubs, bushes and forbs that constitute a small fraction of the
source areas74. Nonetheless, the highly integrated signal in marine sediments likely
averages out much of the vegetation-type effect on δDwax, suggesting such an
adjustment to be appropriate in this instance. Overall, the vegetation and ice-
volume adjusted δDwax record (Fig. 3b) is similar to the unadjusted record (Fig. 3a),
highlighting that the adjustments have a minor effect on the climate signal.
Although δDwax records are sometimes adjusted for temperature75, it is difficult to
estimate the past relationship between temperature and δDp. Given that the sea
surface temperature record from GeoB4905-469 evolved similarly but in antiphase
to δDwax, a temperature adjustment would act to enhance the magnitude of past
δDwax changes, suggesting the estimated magnitude of past δDp changes to be
conservative.

SiZer analysis. In order to assess the timing and significance of the transitions in
our δDwax record, we performed a SiZer (Significant Zero crossings of derivatives)
analysis76. This creates a family of Gaussian smooths for the data, and for each
smooth identifies the time periods during which the derivative is significantly
different from zero. To compare the rapidity of the transitions, we calculated the
mean rate of change for these identified time periods.

Climate modelling. Investigations of the effect of high-latitude cooling on African
hydroclimate were performed with simulations of a high-resolution version of the
fully coupled Community Climate System Model version 3 (CCSM3). In this model
version, the atmosphere model has a T85 (1.4° transform grid) resolution with 26
levels in the vertical, while the ocean has a nominal 1° horizontal resolution with 25
levels77. To study AHP conditions, we analysed a control simulation at 8.5 ka. In
this early Holocene (EH) experiment, we used the orbital parameters and green-
house gas concentrations for 8500 years before present (CO2= 260 ppmv, CH4=

660 ppbv, N2O= 260 ppbv)78. The EH experiment has been spun up over a period
of 1400 years. In order to cool down the northern extratropics, a freshwater hosing
was subsequently applied to the EH control run (experiment EHfre), in which
freshwater at a rate of 0.2 Sv was injected into the northern North Atlantic for 400
years79. From both experiments (control and hosing) the last 100 years were taken
and averaged for analyzes.

Investigations of the source of the atmospheric δDp signal were performed with
a transient run of the intermediate complexity isotope-enabled climate model
iLOVECLIM80–82. We studied the last 25 kyr of a 150 kyr simulation, which was
run with the atmosphere at 5.6° resolution and used accelerated forcing (irradiance,
GHGs and ice sheets were updated with an acceleration factor 10)83. Intermediate
complexity models such as this have difficulty reproducing precipitation, but have
the advantage of producing a continuous transient simulation of water isotopes for
comparison with proxy data.

Code availability. CCSM3 source code is disseminated via the Earth System Grid
(www.earthsystemgrid.org). Full model documentation is available at http://www.
cesm.ucar.edu/models/ccsm3.0/.
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The iLOVECLIM source code is based on the LOVECLIM model version 1.2,
whose code is accessible at http://www.elic.ucl.ac.be/modx/elic/index.php?id=289.
The developments on the iLOVECLIM source code are hosted at https://forge.ipsl.
jussieu.fr/ludus, but are not publicly available due to copyright restrictions. Access
can be granted on demand by request to D. M. Roche (didier.roche@lsce.ipsl.fr) to
those who conduct research in collaboration with the iLOVECLIM users group.

Data availability. The datasets generated during the current study are available in
the PANGAEA repository https://doi.pangaea.de/10.1594/PANGAEA.880119.
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Supplementary	Note	1:	Leaf-wax	n-alkane	δD	

The	 C29	 and	 C31	 n-alkanes	 were	 the	 most	 abundant	 homologues	 in	 the	 GeoB4905-4	

sediments.	The	C29	n-alkane	 is	more	dominantly	produced	by	woody	plants	and	 forbs,	

which	typically	perform	C3	photosynthesis	(1),	 in	contrast	to	the	C31	n-alkane,	which	is	

more	evenly	produced	by	trees	(C3)	and	grasses	(C4	plants	in	this	area).	The	C29	and	C31	

n-alkane	δD	records	display	a	similar	evolution	(Supplementary	Fig.	2).	δD31	values	are	

on	average	5‰	lower,	likely	due	to	the	greater	relative	contribution	of	the	C31	n-alkane	

from	grasses	 (2,	3),	which	are	 thought	 to	partially	use	unenriched	xylem	water	during	

biosynthesis	(4).	Nonetheless,	the	similar	δD	evolution	of	the	two	homologues	suggests	

a	minor	effect	of	any	changes	in	vegetation	source	on	temporal	evolution	of	the	climatic	

signal.	 The	 C29	 n-alkane	 yielded	 more	 precise	 δD	 values	 than	 the	 C31	 n-alkane,	 and	

because	 of	 its	 more	 restricted	 vegetation	 source	 may	 be	 less	 sensitive	 to	 vegetation	

change.	Thus,	we	report	δD	values	for	the	C29	n-alkane,	denoted	as	δDwax.	

Supplementary	Note	2:	Leaf-wax	δ
13
C	and	vegetation	type	

The	 higher	 relative	 contribution	 of	 the	 C31	 n-alkane	 from	 grasses	 likely	 explains	 the	

slightly	higher	δ13C	values	of	this	homologue	(Supplementary	Fig.	2).	The	C29	n-alkane	

yielded	similar	but	analytically	more	precise	δ13C	values	than	the	C31	homologue	and	so	

we	 report	 values	 for	 the	 C29	 n-alkane,	 denoted	 as	 δ13Cwax.	 δ13Cwax	 values	 were	 lowest	

between	25	ka	and	18	ka,	remained	relatively	stable	from	the	Younger-Dryas	(Y-D;	12.7	

ka	-	11.7	ka)	into	the	AHP	and	increased	from	the	mid	to	late	Holocene	(Supplementary	

Fig.	 2).	 Given	 that	 the	 modern	 vegetation	 distribution	 is	 a	 function	 of	 mean	 annual	

precipitation	 and	 wet	 season	 length	 (e.g.	 5),	 it	 might	 be	 expected	 that	 this	 reflects	

hydrological	changes.	However,	the	δ13Cwax	evolution	is	at	odds	with	the	nearby	Barombi	

Mbo	pollen	record	(6),	which	displays	a	lower	abundance	of	forest	pollen	during	the	last	



glacial	 period,	 a	 marked	 increase	 during	 the	 AHP	 and	 a	 decrease	 during	 the	 late	

Holocene,	likely	reflecting	precipitation	changes,	in	line	with	lake	levels	(7).	This	hence	

suggests	 precipitation	 changes	 were	 not	 the	 cause	 of	 the	 first-order	 C3-C4	 vegetation	

shifts	 recorded	 in	 Gulf	 of	 Guinea	 sediments.	 Rather,	 it	 is	 likely	 that	 δ13Cwax	 from	 core	

GeoB4905-4	 is	 reflecting	 small	 shifts	 in	 the	 relative	 contribution	 of	 C3	 dominated	

material	 from	 southern	 Cameroon	 versus	 C4	 dominated	 material	 from	 the	 Sahelian-

Saharan	region.	 In	particular,	we	suggest	 that	 the	 lack	of	a	deglacial	C3	 increase	 in	our	

record	is	mainly	due	to	deglacial	sea-level	rise	shifting	the	mouths	of	the	Ntem,	Nyong	

and	Sanaga	Rivers	inland,	reducing	the	C3	contribution	from	these	rivers	relative	to	the	

Sahelian	dust	sources.	The	sea	level	change	between	the	last	glacial	maximum	and	today	

is	highlighted	by	comparison	of	 the	120m	 isobath	and	 the	modern	coastline	 (Fig.	 1b).	

Sea	level	rise	may	have	also	opened	up	an	additional	transport	pathway	for	Niger	River	

material	to	reach	the	core	site.	

Supplementary	Note	3:	iLOVECLIM	transient	model	simulation	

We	 compared	 our	 δDwax	 record	 with	 δDp	 and	 annual	 precipitation	 amount	 from	 a	

transient	run	of	the	intermediate	complexity	isotope-enabled	climate	model	iLOVECLIM	

(8-11).	 Concerning	 long-term	 trends,	 there	 is	 a	 reasonable	 resemblance	 between	

GeoB4905-4	δDwax	and	modelled	Cameroon	δDp	(Supplementary	Fig.	4a,b).	The	δDwax	

exhibits	 larger	 magnitude	 changes	 than	 modelled	 δDp,	 which	 may	 be	 due	 to	 the	

additional	 effect	 of	 relative	 humidity	 on	 the	 δDwax.	 The	 model	 does	 not,	 however,	

reproduce	the	rapid	transitions	evident	in	the	δDwax	record,	likely	because	the	model	is	

of	 intermediate	 complexity	 and	 an	 accelerated	 forcing	 technique	 was	 used	 (81).	

Freshwater	fluxes	induced	by	ice-sheet	collapses	are	not	included,	likely	explaining	the	

absence	of	rapid	changes	at	the	HS1	and	YD	terminations,	and	relevant	vegetation,	soil	

moisture	and	dust	feedbacks	are	likely	not	adequately	accounted	for	in	the	model,	thus	

excluding	 their	 potential	 role	 in	 the	 enhancement	 of	 aridification	 at	 the	 AHP	



termination.	 Despite	 these	 potential	 shortcomings,	 the	 iLOVECLIM	 model	 shows	 that	

both	 Cameroon	 δDp	 and	 Sahel-Sahara	 δDp	 display	 a	 similar	 evolution	 to	 Sahel	

precipitation	 amount,	 but	 a	 different	 evolution	 to	 Cameroon	 precipitation	 amount	

(Supplementary	 Fig.	 4b-e).	 This	 would	 suggest	 that	 Sahelian-Saharan	 precipitation	

amount	exerts	a	control	on	Cameroon	δDp.		 	



	

Supplementary	Figure	1.	Tropical	Easterly	Jet.	Map	of	zonal	windspeed	(m	s-1)	in	the	

upper	 troposphere	 (150	hPa)	during	boreal	 summer	 (JJA)	 from	NCEP	 re-analysis	data	

(12);	climatological	mean.	Negative	values	(blue	colors)	represent	easterly	winds.	

	 	



	

	

Supplementary	 Figure	 2.	 Raw	 δ13Cwax	 and	 δDwax	 data.	 a)	 δ13Cwax	 of	 the	n-C29	 (dark	

green)	and	n-C31	(light	green)	homologues	from	core	GeoB4905-4.	Error	bars	represent	

analytical	precision.	 b)	δDwax	of	the	n-C29	(dark	blue)	and	n-C31	(light	blue)	homologues	

from	GeoB4905-4.	Error	bars	represent	analytical	precision.	Vertical	bars	mark	African	

Humid	Period	(AHP),	Younger-Dryas	(Y-D)	and	Heinrich	Stadials	1	and	2	(HS1	and	HS1).		



	

	

Supplementary	Figure	3.	Precipitation	amount	effect	 in	the	Sahel	and	Cameroon.		

Precipitation-weighted	 annual-mean	 δDp	 and	 annual-mean	 precipitation	 amount	 for	

Sahelian	 (Niamey,	 Niger	 and	 N'djamena,	 Chad)	 and	 equatorial	 (Douala,	 southern	

Cameroon	and	Bangui,	Central	African	Republic)	GNIP	 stations	 closest	 to	 the	 core	 site	

(13).	δDp	is	negatively	correlated	with	local	precipitation	amount	at	Niamey	(r	=	-0.56,	p	

=	0.024)	and	N'djamena	(r	=	-0.52,	p	=	0.042),	but	there	is	no	significant	correlation	at	

Douala	and	Bangui.	The	lack	of	correlation	may	partly	reflect	lack	of	data.	Nonetheless,	

model	 data	 and	 the	 OIPC	 interpolated	 data	 from	 West	 Africa	 show	 a	 less	 steep	

relationship	between	δDp	and	precipitation	amount	in	wetter	regions	(14).		 	



	

	

Supplementary	 Figure	 4.	 Comparison	 of	 GeoB4905-4	 δDwax	 with	 iLOVECLIM	 δDp	

and	precipitation	amount	 for	 the	 Sahel-Sahara	and	 southern	Cameroon.	 a)	δDwax	

(ice-volume	 and	 vegetation	 adjusted).	 b)	 iLOVECLIM	 southern	 Cameroon	 δDp.	 c)	

iLOVECLIM	Sahel-Sahara	δDp.	d)	 iLOVECLIM	Sahel-Sahara	precipitation	amount,	which	

correlates	 well	 with	 Sahel-Sahara	 δDp	 and	 southern	 Cameroon	 δDp.	 e)	 iLOVECLIM	



southern	 Cameroon	 precipitation	 amount.	 f)	 Insolation	 for	 JJA	 at	 10°N	 (15).	 The	

southern	Cameroon	region	 is	defined	as	 (9°E-14°E	and	1°N-6°N)	and	 the	Sahel-Sahara	

as	(0°E-25°E,	10°N-20°N).		 	



	

Supplementary	Figure	5.	Tropical	Sea	Surface	Temperatures.	a)	Arabian	Sea	surface	

temperature	(SST)	based	on	alkenone	U37K'	 from	core	SO42-74KL	(16).	 	b)	Arabian	Sea	

SST	based	on	alkenone	U37K'	from	core	NIOP-C2-905	(16).	c)	Western	Indian	Ocean	SST	

based	on	foraminiferal	Mg/Ca	from	core	GeoB12615-4	(17).	d)	Gulf	of	Guinea	SST	based	

on	 foraminiferal	 Mg/Ca	 from	 core	 MD03-2707	 (22).	 These	 records	 do	 not	 show	 a	

significant	decrease	at	5.5	ka	below	the	threshold	for	deep	convection,	estimated	to	be	

26-28°C	(18).	The	blue	box	represents	the	African	Humid	Period	(AHP).	 	



	

Supplementary	Figure	6.	Age-depth	model	for	marine	sediment	core	GeoB4905-4	

produced	 using	 BACON2.2.	 Blue	 symbols	 indicate	 individual	 calibrated	 radiocarbon	

ages,	 grey	 shading	 indicates	 all	 likely	 age	 depth	 models,	 black	 dotted	 lines	 the	 95%	

confidence	intervals,	and	the	red	dotted	line	the	median	age-depth	model.		 	



	

Location	/	

Core	
Proxy	

Temperature	

Calibration		

Reference	

Latitude	

(°)	

Longitude	

(°)	

Elevation	

(m.a.s.l.)	

Published	

Seasonal	

Interpretation	

Reference	
PC	1	

Loading	

MD95-2043	 UK’37	 (19)	 36.1	 -2.6	 -1000	 Annual	 (20)	 0.30	

M39-008	 UK’37	 (19)	 36.4	 -7.1	 -576	 Annual	 (20)	 0.34	

MD95-2011	 UK’37	 (19)	 67	 7.6	 -1048	 Summer	 (20)	 0.41	

GeoB5901-2	 UK’37	 (19)	 36.4	 -7.1	 -574	 Annual	 (21)	 0.34	

MD95-2015	 UK’37	 (19)	 58.8	 -26	 -2630	 Annual	 (22)	 0.36	

IOW225517	 UK’37	 (19)	 57.7	 7.1	 -293	 Summer	 (23)	 0.44	

JR51GC-35	 UK’37	 (19)	 67	 -18	 -420	 Annual	 (24)	 0.16	

D13822	 UK’37	 (19)	 38.6	 -9.5	 -88	 Summer	 (25)	 0.40	

	

Supplementary	 Table	 1.	 Northeast	 Atlantic	 SST	 records	 used	 in	 the	 Empirical	

Orthogonal	 Function	 (EOF)	 analysis,	 following	 a	 previous	 approach	 (26).	 For	

consistency	 with	 our	 model	 simulations,	 we	 selected	 only	 northeast	 Atlantic	 records	

from	a	previous	Holocene	temperature	compilation	(27).	To	minimize	seasonal	bias	we	

selected	 only	 alkenone	 SST	 records,	 commonly	 interpreted	 as	 reflecting	 summer	 or	

annual	 temperature.	 Age	 models	 are	 re-calibrated	 with	 the	 Marine09	 calibration,	 as	

previously	 (27).	 Before	EOF	 analysis,	 records	were	 re-sampled	 every	0.1	 kyr	 between	

1.8	and	8.4	ka	and	normalized	to	the	standard	deviation	of	this	period.		 	
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