Fault-controlled stratigraphy of the Late Cretaceous Abiod Formation at Ain Medheker (Northeast Tunisia)

Saloua Bey, Jochen Kuss, Isabella Premoli Silva, M. Hedi Negra, Silvia Gardin

Abstract

The palaeogeographic setting of the studied Ain Medheker section represents an Early Campanian to Early Maastrichtian moderately deep carbonate shelf to distal ramp position with high rates of hemipelagic carbonate production, periodically triggered by mass-flow processes. Syndepositional extensional tectonic processes are confirmed for the Early Campanian. Planktonic foraminifera identified in thin sections and calcareous nannofossils allow the identification of the following biozones: Globotruncana elevata, Contusotruncanita plummerae (replacing former Globotruncanita ventricosa Zone), Radotruncanita calcarata, Globotruncanita falsostuarti, and Gansserina gansseri. The following stable C-isotope events were identified: the Santonian/Campanian boundary Event, the Mid-Campanian Event, and the Late Campanian Event. Together with further four minor isotopic events, they allow for correlation between the western and eastern realms of Tunisia. Frequently occurring turbidites were studied in detail and discussed in comparison with contourites.

1. Introduction

Northeast and east Central Tunisia was located on the south-western shelf of the Tethyan Ocean during the Cretaceous Period. It forms the western part of the Pelagian Shelf, a geological province that includes mainly the Tunisian offshore areas (as far as Malta and north-western Libya; Klett, 2001). During the Late Cretaceous to Neogene interval, periods of extensional tectonics were followed by structural inversion, reverse or thrust faulting, whereby Triassic evaporites provided a “décollement surface” (Guiraud, 1998). In Late Cretaceous times, a shallow submarine swell ran nearly parallel to a major tectonic element, the “North—South Axis”, separating the Tunisian Trough (west of the swell) from the Pelagian Shelf to the east (Fig. 1A).

The “North—South Axis”-tectonic element represents a 100-km-long deformation front of the Atlas Mountains in central Tunisia and consists of NE—SW to NNE—SSW-trending tight folds and thrusts, reactivated during the African–European collision in Middle Miocene time (Anderson, 1996). Adjacent to the Pelagian Platform, thrust structures are affected later by strike-slip faults (Fig. 1B). The complex structural evolution of the “North—South Axis”-tectonic element was interpreted by Ouali et al. (1987) and Boccaletti et al. (1988) as a transpressive ‘flower’ structure, generated during sinistral strike-slip on an inferred N–S-trending basement fault.

Keywords:
Biotratigraphy
Isotope stratigraphy
Campanian
Maastrichtian
Tunisia
Tectonics
Mass-flow

ARTICLE INFO

Article history:
Received 29 December 2010
Accepted in revised form 12 September 2011
Available online 22 September 2011

Keywords:
Biotratigraphy
Isotope stratigraphy
Campanian
Maastrichtian
Tunisia
Tectonics
Mass-flow

© 2011 Elsevier Ltd. All rights reserved.

095-6671/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
imprints of syndepositional reworking of (hemi) pelagic carbonaceous sediments on a palaeo-slope. The analysis of planktonic foraminifera allows for a high-resolution biostratigraphic framework, supported by stable isotope-geochemistry data. The latter have been widely used as an important tool for stratigraphic correlation in Late Cretaceous pelagic and hemipelagic settings (Scholle and Arthur, 1980; Jarvis et al., 2002, 2006; Jacobs et al., 2005) and enable us to refine the stratigraphic concepts of the studied section.

The main goals of this paper are to: (1) describe the characteristics of the stratigraphic record of a Late Cretaceous submarine fault-controlled half-graben and the corresponding downcurrent mass-flow processes; (2) analyze the stratigraphic architecture of the Abiod Formation at Ain Medheker; (3) date the main events recorded in it; (4) to identify the processes controlling turbidite sedimentation; and (5) to integrate all data into a regional and supra-regional stratigraphic framework.

These data will provide a deeper understanding of the stratigraphic evolution of the Late Cretaceous Abiod Formation, syndepositional tectonic movements that are related to stages of extensional tectonics, and will contribute to interpretations on the evolution of the Late Cretaceous Pelagian Shelf. The ultimate objective of this study is to integrate outcrop geological data and descriptions from similar areas to develop a tectono-sedimentary model explaining depositional processes during the Campanian–Early Maastrichtian period.

2. Geological setting

The Abiod Formation (Early Campanian–Early Maastrichtian) of Tunisia exhibits varying thicknesses and facies from the south to the north. In the Kasserine area (central Tunisia), the thickness is highly reduced and the Abiod Formation includes conglomeratic gravity flow deposits (Negra, 1994) and local rudist-bearing limestones (Khessibi, 1978; M’Rabet et al., 1986; Negra, 1986, 1995; Negra and Purser, 1989, 1995; Ben Ferjani et al., 1990; Negra et al., 1995; Negra and Gili, 2004), or is even missing in the Kasserine–Sidi Bouzid Island (Negra et al., 1995; Fig. 1A). Further to the south (Gafsa area), the Abiod Formation consists of bioclastic limestones, intercalated with sandy, dolomitic and evaporitic intervals (Abdallah, 1987; Negra and M’Rabet, 1994; Chaabani, 1994), indicating the proximity to the southern Saharan Platform. In the southernmost areas (Chotts), the Abiod facies becomes more proximal with lagoonal to intertidal–subtidal environments.

Based on thickness variations of the Abiod Formation, Hennebert et al. (2009) proposed two elongated shoals in central East Tunisia (Fig. 1A): the first runs along the northern prolongation of the Kasserine Island, nearly parallel to the “North–South Axis”–tectonic element, with a subsiding basin (Tunisian Trough) to the west, where the Abiod Formation exceeds 600 m of pelagic and hemipelagic chalks and marls (Burollet and Ellouz, 1984; Ben Ferjani et al., 1990); the second is situated to the east of Kasserine Island, extending over the Pelagian Shelf. Both shoals exhibit several highs that are indicated by circular areas without Abiod Formation (Fig. 1A).

The studied section AM (Ain Medheker) is located to the west of an active quarry at the village of Ain Medheker (ca.10 km west of Enfidha). It is near the eastern boundary of the “North–South Axis”–tectonic element, therefore representing also the eastern flank of the first shoal (Fig. 1A,B).

3. Material and methods

The studied section AM comprises a 115-m-thick succession of limestones and marly or argillaceous limestones. The Abiod Formation (105 m) is sandwiched between the upper Aleg Formation (below) and the El Haria Formation (above; Fig. 2). Our detailed microfacies, biostratigraphy and chronostratigraphy studies were carried out on 130 samples that were collected bed-by-bed; moreover, the textures of both, hemipelagic carbonates and intercalated turbiditic layers of the Abiod Formation (including the transition to the underlying/overlying formations) was documented. A total of 72 thin sections were prepared from limestones to determine the microfossils and the microfacies characteristics. The percentages of the main components were estimated by means of point counting (see Fig. 2). Planktonic foraminifera are the most...
Fig. 2. Sedimentologic characteristics of the 105-m-thick Abiod Formation at Ain Medheker, composed of different carbonate lithologies that are summarized in field units I–VII (compare Figs. 5, 6). A sharp boundary to the underlying Aleg Formation (composed of dark marls), contrasts with a gradual transition to the overlying El Haria Formation (composed of dark limestone-marl alternations). Numbered samples (broad bulks) refer to the thin sections of (hemipelagic limestones studied. Four turbidite-rich intervals are highlighted (summarizing one to three single turbidite beds a–j); they alternate with slump-rich intervals. The distribution of the major components is often related to slope events (turbidites-contourites and/or slumps). The right-hand column refers to the semi-quantitative distribution of planktonic foraminifera without turbiditic samples. Microfacies: M, mudstone; W, wackestone; P, packstone (the varying content of mainly micritic matrix is not considered).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>A. parcus expansus</th>
<th>A. parcus parcus</th>
<th>A. parcus constrictus</th>
<th>A. cymbiformis</th>
<th>E. eximius</th>
<th>R. anthophorus</th>
<th>O. campanensis</th>
<th>A. regularis</th>
<th>C. verbeckii</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 23</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AM 14</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AM 13</td>
<td>5</td>
<td>9</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AM 10</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AM 7</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AM 5</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Database of planktonic foraminifera of section AM.

frequent constituents and were classified taxonomically, based on the criteria defined by Premoli Silva and Sliter (1995) and Premoli Silva and Verga (2004).

In order to strengthen the age assignment of the base of Ain Medheker section, seven samples from the basal limestones were examined for their nanoforaminiferal content. The study of calcareous nannofossils was conducted by means on standard processed smear slides and specimens were identified under light microscope at 1250× magnification. Biostratigraphically important species were quantified along two traverses of each smear slide which correspond to approximately 210 fields of view (see Table 1).

A total of 130 bulk rock samples (with an average spacing of ca. 0.8 m) were analyzed for stable carbon isotopes (Table 3). To avoid diagenetic alteration, all geochemical samples were selected from the micritic parts of the limestones. The stable isotope composition was measured using a Finnigan mass spectrometer at MARUM Bremen.

Table 3

Database of measured δ¹³C data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>13/12-C</th>
<th>Sample</th>
<th>13/12-C</th>
<th>Sample</th>
<th>13/12-C</th>
<th>Sample</th>
<th>13/12-C</th>
<th>Sample</th>
<th>13/12-C</th>
<th>Sample</th>
<th>13/12-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1</td>
<td>2.26</td>
<td>AM27</td>
<td>1.99</td>
<td>AM53</td>
<td>2.07</td>
<td>AM79</td>
<td>1.94</td>
<td>AM105</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM2</td>
<td>2.22</td>
<td>AM28</td>
<td>2.25</td>
<td>AM54</td>
<td>1.97</td>
<td>AM80</td>
<td>2.00</td>
<td>AM106</td>
<td>2.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM3</td>
<td>2.27</td>
<td>AM29</td>
<td>2.04</td>
<td>AM55</td>
<td>2.02</td>
<td>AM81</td>
<td>2.04</td>
<td>AM107</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM4</td>
<td>2.12</td>
<td>AM30</td>
<td>2.19</td>
<td>AM56</td>
<td>1.70</td>
<td>AM82</td>
<td>2.03</td>
<td>AM108</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM5</td>
<td>2.06</td>
<td>AM31</td>
<td>2.12</td>
<td>AM57</td>
<td>1.91</td>
<td>AM83</td>
<td>2.09</td>
<td>AM109</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM6</td>
<td>2.11</td>
<td>AM32</td>
<td>2.09</td>
<td>AM58</td>
<td>1.95</td>
<td>AM84</td>
<td>2.02</td>
<td>AM110</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM7</td>
<td>2.14</td>
<td>AM33</td>
<td>2.09</td>
<td>AM59</td>
<td>1.93</td>
<td>AM85</td>
<td>2.03</td>
<td>AM111</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM8</td>
<td>2.21</td>
<td>AM34</td>
<td>2.24</td>
<td>AM60</td>
<td>1.98</td>
<td>AM86</td>
<td>2.09</td>
<td>AM112</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM9</td>
<td>2.28</td>
<td>AM35</td>
<td>2.29</td>
<td>AM61</td>
<td>1.66</td>
<td>AM87</td>
<td>2.10</td>
<td>AM113</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM10</td>
<td>2.25</td>
<td>AM36</td>
<td>2.31</td>
<td>AM62</td>
<td>2.00</td>
<td>AM88</td>
<td>2.06</td>
<td>AM114</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM11</td>
<td>2.31</td>
<td>AM37</td>
<td>2.28</td>
<td>AM63</td>
<td>2.08</td>
<td>AM89</td>
<td>1.88</td>
<td>AM115</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM12</td>
<td>2.25</td>
<td>AM38</td>
<td>1.95</td>
<td>AM64</td>
<td>1.97</td>
<td>AM90</td>
<td>2.10</td>
<td>AM116</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM13</td>
<td>2.34</td>
<td>AM39</td>
<td>2.09</td>
<td>AM65</td>
<td>1.93</td>
<td>AM91</td>
<td>2.16</td>
<td>AM117</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM14</td>
<td>2.25</td>
<td>AM40</td>
<td>2.03</td>
<td>AM66</td>
<td>1.88</td>
<td>AM92</td>
<td>1.96</td>
<td>AM118</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM15</td>
<td>2.17</td>
<td>AM41</td>
<td>1.94</td>
<td>AM67</td>
<td>2.07</td>
<td>AM93</td>
<td>1.95</td>
<td>AM119</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM16</td>
<td>2.24</td>
<td>AM42</td>
<td>2.01</td>
<td>AM68</td>
<td>2.03</td>
<td>AM94</td>
<td>2.05</td>
<td>AM120</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM17</td>
<td>2.07</td>
<td>AM43</td>
<td>2.03</td>
<td>AM69</td>
<td>1.73</td>
<td>AM95</td>
<td>2.11</td>
<td>AM121</td>
<td>1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM18</td>
<td>2.16</td>
<td>AM44</td>
<td>1.95</td>
<td>AM70</td>
<td>2.00</td>
<td>AM96</td>
<td>1.93</td>
<td>AM123</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM19</td>
<td>1.85</td>
<td>AM45</td>
<td>1.67</td>
<td>AM71</td>
<td>2.08</td>
<td>AM97</td>
<td>2.13</td>
<td>AM124</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM20</td>
<td>2.14</td>
<td>AM46</td>
<td>1.93</td>
<td>AM72</td>
<td>2.12</td>
<td>AM98</td>
<td>2.20</td>
<td>AM125</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM21</td>
<td>1.99</td>
<td>AM47</td>
<td>2.08</td>
<td>AM73</td>
<td>1.86</td>
<td>AM99</td>
<td>2.08</td>
<td>AM126</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM22</td>
<td>1.86</td>
<td>AM48</td>
<td>2.07</td>
<td>AM74</td>
<td>1.99</td>
<td>AM100</td>
<td>2.06</td>
<td>AM127</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM23</td>
<td>2.02</td>
<td>AM49</td>
<td>1.94</td>
<td>AM75</td>
<td>1.98</td>
<td>AM101</td>
<td>2.09</td>
<td>AM128</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM24</td>
<td>1.88</td>
<td>AM50</td>
<td>2.02</td>
<td>AM76</td>
<td>1.86</td>
<td>AM102</td>
<td>2.14</td>
<td>AM129</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM25</td>
<td>1.96</td>
<td>AM51</td>
<td>2.05</td>
<td>AM77</td>
<td>1.94</td>
<td>AM103</td>
<td>2.09</td>
<td>AM130</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM26</td>
<td>2.06</td>
<td>AM52</td>
<td>1.98</td>
<td>AM78</td>
<td>1.69</td>
<td>AM104</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Results

4.1. Lithology and regional stratigraphy

The white limestones of the Abiod Formation in Ain Medheker are underlain by dark grey limestones and marls of the Aleg Formation (Late Turonian–Late Santonian) and overlain by rhythmical alternations of dark marls and limestones comprising the lower part of the clayey El Haria Formation (Early Maastrichtian–Paleocene) (Fig. 2). The base of the Abiod Formation is represented by white–grey limestones (unit I), while the top is defined by a gradual transition to dark limestones and marls of the El Haria Formation. Mabrouk et al. (2006) discussed an unconformity between the Aleg and Abiod Formations, based on subsurface studies offshore Tunisia.

Several authors described a tripartite Abiod Formation consisting of two calcareous units separated by a marly member (M. Rabet et al., 1986; Negra and Purser, 1989; Negra et al., 1995), which was recently refined by Robaszynski and Mzoughi (2010). In section Ain Medheker, however, this tripartite subdivision cannot be applied, but the Abiod Formation was subdivided into seven lithostratigraphic units (I–VII) (Fig. 2). Unit I is split into platy and marly limestones at the base and massive limestones above, with slumping structures mainly in the upper part (Fig. 2). Unit II consists of thick-bedded limestones, with intercalations of massive, slumped, limestone packages in the upper part (unit III; Fig. 6C); thin turbiditic layers occur in both units. Similarly, units IV and V are composed of thick-bedded (IV) and massive slumped packages (V) with turbidites (Fig. 6E). Unit VI comprises well-bedded chalky limestones, while unit VII above is split into massive chalky limestones with major slumps at the base that are overlain by bored chalky and marly limestones with conspicuous ichnofossils (Helminthoida sp.).

The upper boundary to the rhythmically alternating dark marls and limestones of the El Haria Formation is gradational. Chronostratigraphically, the Abiod Formation spans an Early Campanian–Early Maastrichtian interval in the eastern parts of central Tunisia, near El Kef and Elles (Li and Keller, 1998; Li et al., 1999, 2000; Jarvis et al., 2002; Robaszynski and Mzoughi, 2004, 2010; Hennebert et al., 2009). In the studied section AM, an Early Campanian age (Globotruncanita elevata Zone) was attributed to the basal beds of the Abiod Formation, while the top beds lie within the Gansserina gansseri Zone of earliest Maastrichtian age (see below, Fig. 3).

4.2. Biostratigraphy: planktonic foraminifera

The study of planktonic foraminifera from the Ain Medheker section was conducted using two-dimensional well-cut views from thin sections. Specimens were identified taking into account the test size, profile shape and type of margin, growth-patterns, chamber size, size of umbilicus, wall thickness, and ornamentation. However, it is worth mentioning that in thin sections rare species may not be detected and ranges of taxa may appear shorter than those that can be obtained from washed residues, a method that concentrates the species.

The 72 thin sections examined yielded highly diverse, mostly abundant and well preserved planktonic assemblages (Figs. 7, 8).
Fifty-seven species belonging to 15 genera could be identified by comparison with the extensive thin-section illustrations provided by Premoli Silva and Sliter (1995), Robaszynski et al. (2000), and Premoli Silva and Verga (2004) among others.

Planktonic foraminiferal assemblages throughout the section are dominated by the keeled genera *Globotruncanita*, *Globotruncanana*, *Radotruncana*, *Contusotruncana* associated with less common genera *Globotruncanella*, *Gansserina*, *Archaeoglobigerina*, *Globoigerinelloides*, *Rugoglobigerina*, some heterohelicids (*Heterohelix*, most common), *Pseudotextularia*, *Pseudoguembelina*, *Ventilabrella*, *Planoglobulina*, and rare Schackoina (see Fig. 3). For genus abbreviations see caption to Fig. 3.

On the basis of the stratigraphic distribution of the species identified (see Fig. 3), five biozones combining the standard schemes (i.e., Caron, 1985; Sliter, 1989; Premoli Silva and Sliter, 1995; Robaszynski et al., 2000; Petrizzo et al., 2011) could be recognized at Ain Medheker with minor modifications. They are (in stratigraphic order), the *Globotruncanita elevata*, *Globotruncanana ventricosa*, *Radotruncana calcarata*, *Globotruncanana falsostuarti*, and *G. gansseri* zones spanning the Early Campanian to the Early Maastrichtian. The modifications to the standard zonation concern the identification of the *G. elevata/G. ventricosa* zonal boundary, which is defined by the lowest occurrence (LO) of *G. ventricosa*. Firstly, the stratigraphic range of this taxon has been proved to be diachronous at different latitudes and the appearance of *G. ventricosa* at Tethyan latitudes is markedly delayed with respect to the southern oceans (Petrizzo, 2000, 2001, 2003). Secondly, the taxonomic concept of *G. ventricosa* has changed through the years after the revision of the globotruncanids by Robaszynski et al. (1984), who included in
G. ventricosa also forms transitional between Globotruncanita lineana and the true, plano-umbilically convex G. ventricosa (i.e., Globotruncanita tricarinata auctorum). Consequently, the LO of G. ventricosa resulted in being much lower than the appearance of its typical forms, at least at low latitudes. It is worth noting that the identification of zonal boundaries based on transitional forms is not an easy task and can be very subjective; in addition, if identifications are conducted on thin sections, the placement of any zonal boundary can end up being apparently diachronous.

At Kalaat Senan, Robaszynski et al. (2000) identified a "subzone of abundant G. ventricosa" in the upper part of their G. ventricosa Zone, a fact suggesting that the real appearance of this taxon, when it is much less common, is difficult to detect especially in thin section. Recently, Petrizzo et al. (2011), in their comparative biostratigraphic study on planktonic foraminiferal distribution from some widespread localities, highlighted (1) the absence of G. ventricosa at the stratigraphic level at which is supposed to occur firstly in the Tethyan area and (2) the presence of transitional forms resembling G. ventricosa and erroneously used to identify the base of the G. ventricosa Zone, meanwhile suggesting the appearances of Globotruncanita atlantica, Contusotruncanana plummerae and the highest occurrence (HO) of Hendersonites carinatus (formerly Heterohelix carinata) as potentially good bioevents for regional and global correlation. Owing to the difficulty of using G. ventricosa as zonal marker in tropical and subtropical areas, these authors proposed a new zone based on the first appearance of C. plummerae, replacing the long G. ventricosa Zone of the standard zonation.

At section AM the appearance of C. plummerae is recorded in sample AM59, followed by that of G. atlantica in sample AM73, whereas H. carinatus was not found. In addition, the LO of C. plummerae is preceded, ca. 10 m below, by the LO of Contusotruncanana patelliformis in sample AM52 within unit III (see Fig. 3, Table 2), the LO of which, however, appears delayed in section AM in comparison with other, even Tunisian, sections (see Robaszynski et al., 2000; Robaszynski and Mzoughi, 2010; Petrizzo et al., 2011).

Taking this finding into account, and in agreement with Petrizzo et al. (2011), the Gt. elevata/G. ventricosa zonal boundary is here tentatively drawn at the level of the LO of C. plummerae (sample AM59). Accordingly, the former G. ventricosa Zone is replaced here by the C. plummerae as defined by Petrizzo et al. (2011).

Globotruncanita elevata Interval Zone

New definition: the interval from the highest occurrence (HO) of Dicarinella asymetrica to the LO of Globotruncanita plummerae.

The base of the Abiod Formation in section AM can be attributed to the G. elevata Zone due to the presence of the nominal taxon along with Globotruncanita stuartiformis (Fig. 8A–D) and the absence of dicarinellids and marginotruncanids (see Fig. 3). The assemblages are dominated by double-keeled specimens of Globotruncanana and single-keeled Globotruncanita. Other species identified are Contusotruncanana fornicata, Pseudotextularia nutallii (Fig. 8L, M), Archaeoglobigerina cretacea (Fig. 8N), followed by Heterohelix globulosa (Fig. 8R, S), Globigerinelloides praetriehilensis, and Heterohelix striata. C. patelliformis (Fig. 8Q) appears in the upper
Fig. 5. Field characteristics of the Abiod Formation of Ain Medheker. A, panoramic view of the late Cretaceous strata at Ain Medheker with lithostratigraphic units I–VII representing the Abiod Formation (compare Fig. 2). The lower boundary against the Aleg Formation is covered by younger gravel, except near the fault-related graben structure at the eastern side and at the western part of the outcrop (the sketch in Fig. Ba reflects the half-graben, indicated in B). B, details of unit I with thickening of beds a–d towards the fault, to illustrate the syndepositional tectonic relationships along the normal fault. The conformable succession above (nearly horizontal bedding) starts with unit II. C, carbonates of unit I show an increase in thickness of all three subunits a–c towards the normal fault. Irregular bedding within the subunits reflects slumping and synsedimentary mass movement (see Fig. 6D).
part of the zone, while rare Schackoina cenomana (Fig. 8G,H) is recorded in the lowermost part.

The upper boundary of the zone is drawn at the level of the LO of C. plummerae (Fig. 7E), recorded in sample AM59 within unit IV (see above).

Based on the above definition, the Gt. elevata Zone is recorded in ca.45-m-thick limestones of the lower-mid Abiod Formation. An early to early middle Campanian age has been assigned to the Gt. elevata Zone by Hardenbol and Robaszynski (1998) and Gradstein et al. (2004).
Contusotruncanita plummerae Partial Range Zone

Definition: the interval from the LO of G. plummerae (Fig. 7E) to the LO of R. calcarata (Fig. 7K–O).

With respect to the LO of C. plummerae, which defines the base of the nominal zone, in section AM the lowest true G. ventricosa is recorded in the mid part of the C. plummerae Zone in the upper part of unit V (sample AM82; see Fig. 3, Table 2), at a level that might be coeval with the base of the “subzone of abundant G. ventricosa” identified by Robaszynski et al. (2000) at Kalaat Senan.

The planktonic assemblages in this zone in section AM are characterized overall by the abundance of both genera Globotruncanina [G. linnieana, G. arca, G. bulloides (Fig. 8F), G. hilli, G. lapparenti, G. mariel, G. orientalis] and Globotruncanina (Gt. elevata, Gt. stuartiformis); H. globulosa, Rugoglobigerina rugosa (Fig. 8V), and Pseudogumbelina costulata (Fig. 8P) are also frequent. Besides C. plummerae, G. atlantica followed by Radotruncana subspinosa (Fig. 7UV) are recorded in the lower part prior to the local LO of true G. ventricosa (Fig. 7X, Y). G. falsostuartii and Globotruncanella havanensis appear in the uppermost part of the zone, whereas G. elevata (Fig. 7Q–T) and G. atlantica disappear almost at the same levels just prior to the top of the zone. Robaszynski and Mzoughi (2004) considered the HO of Gt. elevata as a global bioevent, an assessment not confirmed in their later publication (Robaszynski and Mzoughi, 2010).

In section AM about 45.5–m-thick limestones and marls of the Ahid Formation are attributed to the G. plummerae Zone, which can be dated to the middle Campanian according to Hardenbol and Robaszynski (1998) and Gradstein et al. (2004).

Radotruncana calcarata Total Range Zone

Definition: total range zone of the nominal taxon.

The zonal marker R. calcarata (Fig. 7K–O) is relatively abundant. The planktonic foraminiferal assemblages of the R. calcarata Zone in the studied section are similar to those of the previous G. plummerae Zone. Most frequent are various species of the genus Globigerinelloides (Gt. ultramicrus, Gl. bolli, and Gl. alvarezi) together with R. rugosa and Heterohelix punctulata. In addition to the index species C. plummerae, C. patelliformis, C. fornicata, and R. subspinosa are also well represented in the assemblages.

In section AM only 4 m of marly limestones are assigned to the R. calcarata Zone, which was dated to the early Late Campanian by Hardenbol and Robaszynski (1998) and Gradstein et al. (2004).

Globotruncanina falsostuartii Partial Range Zone

Definition: the interval from the HO of R. calcarata and the LO of G. gansseri.

Although this interval had changed its name several times in over fifty years, its definition has remained constant. It was first named as G. falsostuartii Zone by Postuma (1971), followed by Robaszynski et al. (1984, 2000). Caron in 1978 changed its name to the G. havanensis Zone. Subsequently, Caron in 1985 subdivided the latter biozone (G. falsostuartii Zone of Postuma, 1971) into a lower G. havanensis Zone and an upper Globotruncanina aegyptiaca Zone, a subdivision that was followed by a number of authors (Sliter, 1989; Premoli Silva and Sliter, 1995, 1999; Robaszynski and Caron, 1995; Hardenbol and Robaszynski, 1998). The dual subdivision of

this interval could not be applied to the AM assemblages because of the scarcity and scantiness of the index species G. aegyptiaca.

In the *G. falsostuarti* Zone of the AM section Globotruncaniforma, Globotruncanina and Contusotruncanina are still the dominant genera. In addition, new taxa such as Globotruncanita petterisi, Planoglobulina caseyae (Fig. 8O), Rugoglobigerina hexacamerata (Fig. 8I), Rugoglobigerina pennyi (Fig. 8W) appear within the zone and Rugoglobigerina macrocephala at the very top.

The thickness of the *G. falsostuarti* Zone is only 5.5 m in the AM section. According to Hardenbol and Robaszynski (1998) and Gradstein et al. (2004) it can be dated to the middle Late Campanian.

Gansserina gansseri Partial Range Zone

Definition: the interval from the LO of the nominal taxon to the LO of *Abathomphalus mayaroensis*.

The base of the zone in section AM was identified by the appearance of the marker species *G. gansseri* (Fig. 7G) along with the LO of *Ventilabrella multicusmatula* and *Globotruncanina angulata*. Other taxa are recorded within this interval, such as *Planoglobulina acervulinoides* (Fig. 7A–C), Gansserina wiedenmayeri and Rugoglobigerina milamensis; however, all of them display limited ranges. In addition, several species of globotruncanids [*G. linneiana, G. Bulloides* (Fig. 8F), *G. lapparenti, G. mariel, G. falsostuarti], *G. gansseri, G. havanensis* (Fig. 7C), *C. plummerae* and others are not recorded in the upper part of the section.

The upper boundary of this zone was not identified in the studied section. It should continue higher into the marls of the upper part of the section.

4.3. Calcareous nannofossils from the base of the Abiod Formation

Calcareous nannofossil assemblages are quite abundant but poorly preserved. The studied samples yielded a moderately diverse assemblage with an average of 25 species identified (see Table 1). The assemblages are dominated by low-latitude Tethyan taxa, although taxa of boreal affinity, such as *Orastrum campanensis*, occur sporadically.

For the present work we preferred to consider and discuss the most important biostratigraphic events and their succession rather than apply a “standard” zonation. This allows a more flexible comparison and long range correlation.

All the samples analyzed contain *Aspidolithus parcus parcus* and *Aspidolithus parcus constrictus* (Fig. 9B), which indicate an early Campanian age. Most nannofossil workers (Thierstein, 1976; Perch-Nielsen, 1985; Bralower et al., 1995; Gardin et al., 2001 and many others) agree in placing the base of the Campanian at the LO of *A. parcus parcus*, marker of CC18 Zone (Sissingham, 1977; Perch-Nielsen, 1985), NC 18 Zone (Roth, 1978) and UC 14 Zone (Burnett, 1998). A morphological lineage from *Aspidolithus parcus expansus* to *A. parcus parcus* and *A. parcus constrictus*, characterized by a reduction of the central-plate area, characterizes the uppermost Santonian–basal Campanian (Crux, 1982; Gardin et al., 2001). The “A. parcus Zone”, marked by the occurrence of the nominate taxon, correlates well with the *Gt. elevata* Zone of planktonic foraminifera and Chron 33R at low latitudes (Bralower et al., 1995; Gardin et al., 2001).

Burnett (1998) erected a basal Campanian zone defined by the LO of *Aspidolithus cymbiformis* (UC13). This event, however, is not robust (see discussion in Wagreich et al., 2010). In our analysis *A. cymbiformis* (Fig. 9A) was found to be very rare, occurring only
sporadically. A regular occurrence of *A. cymbiformis* l.s. was observed only above the LO of *A. parcus* in the Italian Bottaccione section (Gardin et al., 2001).

The occurrence of *Ceratolithoides verbeekii* (Fig. 9C) in sample AM10 indicates a slightly younger age; its LO was used by Perch-Nielsen (1985) to define subzone CC18b and by Burnett (1998) to define subzone UC14. The absence of *Ceratolithoides aculeus*, whose first occurrence is usually found within the former *G. ventricosa* Zone of planktonic foraminifera and Chron 33N at low latitudes (Bralower et al., 1995; Gardin et al., 2001), excludes a late-early Campanian age.

4.4. Chemostratigraphy: stable carbon isotopes

The δ13C values of the Ain Medheker section range between 1.4‰ and 2.3‰ (Fig. 4). They are ca. 0.3‰ higher than those described by Jarvis et al. (2002) from El Kef (NW Tunisia) and from Trunch (England). Our biostratigraphic framework allows us to correlate three major excursions of δ13C values that are documented in section AM (dotted areas of Fig. 4) with three major isotopic events (2, 6) following the terminology of Jarvis et al. (2002): Santonian–Campanian Event (1), Mid-Campanian Event (5) and Upper Campanian Event (9). Moreover, two minor positive isotopic excursions (4, 8) and two minor negative isotopic excursions (2, 6) following the terminology of Jarvis et al. (2002) have been identified (Fig. 4) and allow for isotopic comparisons and further subdivision of the Abiod Formation. The correlation of isotopic events 3 and 7 with corresponding δ13C values of section AM remains unclear. The following characteristics of the isotopic events of the section are summarized from bottom to top:

1. A sharp increase in δ13C values occurs at the base of the *G. elevata* Zone of section AM, corresponding with the Santonian–Campanian Event of the upper *Marsupites testudinarius* Zone in Trunch (Jarvis et al., 2002). This event defines a global positive δ13C excursion and is reflected in a 6-m-thick interval of platy limestones with maximum δ13C values of up to 2.3‰ in section AM (Fig. 4).

2. A negative excursion above is indicated by a sharp decrease in δ13C values in the middle part of the *G. elevata* Zone of section AM. It was correlated with the carbon isotopic event 2 of the upper part of the *Offaster pilula* Zone at Trunch (Fig. 4). This minor isotopic event is more pronounced at section AM, owing to a more rapid decrease to lower δ13C values of 1.7‰ (Fig. 4). The increasing δ13C values in section AM above, with maximum values of up to 2.3‰, have no counterparts at Trunch.

3. The minor isotopic event 3 was defined by a small increase in δ13C values near the base of *G. ventricosa* Zone in El Kef, corresponding to the lower *Gonioteuthis quadrata* Zone at Trunch (Jarvis et al., 2002). It may correlate with minor fluctuations of the δ13C curve at section AM near sample 45 (upper part of the *G. elevata* Zone; Fig. 4). However, an unequivocal correlation of event 3 to section AM is hindered by clear assignments to the isotopic curve.

4. Event 4 corresponds to a minimum of δ13C values in the lower-to mid-*C. plummerae* Zone of both sections El Kef and AM, which was correlated to the middle *G. quadrata* Zone at Trunch (Jarvis et al., 2002).

5. A prominent increase of δ13C values followed by a long positive excursion corresponds to the Mid-Campanian Event (Jarvis et al., 2002). In El Kef the onset of that event lies near the top of the *C. plummerae* Zone, whereas it occurs in the middle part of that biozone in section AM, where it spans a 5-m-thick limestone interval. According to Jarvis et al. (2002, 2006), isotopic event 5 is correlated with the base of the Late Campanian *Belenitella mucronata* Zone at Trunch (Fig. 4).

6. A change to increasing δ13C values (<2‰) in the upper part of the *C. plummerae* Zone at both sections AM and El Kef marks event 6, corresponding to the lower *B. mucronata* Zone of Trunch.

7. A δ13C trough in the lower *R. calcara* Zone at El Kef section correlates to a break in slope in the lower *B. mucronata* Zone of Trunch (Jarvis et al., 2002). In section AM this tie point is not clearly visible, although a complete stratigraphic record (without turbidites and slumps) was assumed for the late *C. plummerae* to *R. calcara* zones.

8. A significant positive shift of δ13C values in the lower *G. falsostauri* Zone of both Tunisian sections is less pronounced at Trunch (Fig. 4). The LO of *R. hexacamerata* directly above this minor event confirms a good correlation between sections El Kef and AM.

9. A major negative carbon isotope excursion marks the base of the *G. gansseri* Zone at El Kef and corresponds with the middle *B. mucronata* Zone at Trunch. Minimum δ13C values (1.4‰) above the LO of *G. gansseri* are less pronounced in section AM (Fig. 4). The positive excursion above occurs in the topmost limestones of the Abiod Formation in Ain Medheker and correlates with the Upper Campanian Event sensu Jarvis et al. (2002).

All three major events 1, 5, and 9 show similar relative δ13C fluctuations in all sections (Fig. 4). In section AM, the “Early Campanian Event” represents a positive carbon isotope excursion of around +0.3‰ and the Mid-Campanian Event an excursion of more than +0.2‰ the magnitudes of both events are closely comparable to those described by Jarvis et al. (2002). The negative carbon isotope excursion of −0.4‰ at the base of the “Late Campanian Event” (El Kef and Trunch) corresponds to −0.3‰ in section AM.

4.5. Facies characteristics

“Chalky” limestones are often described as representing the Abiod Formation (Burotlet, 1956; Jarvis et al., 2002; Mabrouk et al., 2005). In the section AM, however, hard limestones prevail: “chalky” lithologies occur only in the upper part of the section, because of diagenetic alterations (compare Hennebert et al., 2009). The studied white–grey limestones and dark grey argillaceous limestones comprise pelagic/hemipelagic deposits, superimposed by submarine slides/slumps with intercalated sediment gravity flow deposits (turbidites). Similar facies types are described from various Abiod localities in Tunisia (Burotlet, 1956; Negra, 1994; Negra and Zaghrani, 2007); however, some additional discussion for the Ain Medheker outcrop is required.

Four slumping intervals (comprising 2–11 slump beds) were separated by four turbidite-rich intervals (each comprising 1–4 turbidite beds) with gradational boundaries between both interval types (Fig. 2). These fourfold, alternating intervals indicate cyclic changes between two different mass-flow processes, submarine slides/slumps and gravity flows. Both, slumps and turbidites are missing from the topmost part of the section (near the Abiod–El Haria boundary).

Hemipelagic limestones. These represent the prevailing lithology of section AM. They are composed of cm- to dm-thick well-bedded limestones and marly limestones. Mudstones and wackestones dominate these hemipelagites, containing 10–20% planktonic foraminifera (Fig. 2, right-hand column), <2% benthonic foraminifera and generally <1% bioclasts plus quartz; the micritic matrix may reach more than 80% (Fig. 9G).

Slumps. Several slump beds of units III and IV are up to 3.5 m thick (Fig. 6). They are characterized by internal reworking, synsedimentary folding, and reworked clasts (Fig. 6A–C). Large m-scale cut
and fill structures reflect mass transport processes of pre- to unconsolidated sediment bodies that were translocated downslope along discrete shear planes. Folding may be involved, often co-occurring with irregular dm-scale limestone nodules (Fig. 6C). As dewatering structures (resulting from squeezing out of excess water from pores during compaction) are missing, the folds argue for syndepositional slope instability. The varying strike and dip directions of some measured fold axes (with a centre of dip around northeast) indicate a southeast dipping palaeo-slope. The slumping structures did not disturb the general stratigraphic succession, thus indicating only minor vertical offsets during displacements at the slope. Similarly the slumps resulted only in a minor amalgamation that is stratigraphically not resolvable.

Turbidites. Sediment gravity flows are represented by turbidites, composed of cm-thick layers of packstones, irregularly cutting into unconsolidated wackestones below (Fig. 6E). Except for the lower turbidite (a), each of the three turbidite beds of section AM are summarized to one turbidite-rich interval; they alternate with four turbidite-free slumping intervals. The quantitative distribution of the main components determined in thin sections of single turbidite beds demonstrates a generally low content of quartz (0–3%) or glauconite (Fig. 9J), inoceramid remains (0–5%; Fig. 9I) (one turbidite sample (AM 51) with max. 8%), and benthonic foraminifera (0–2%; max. 3%), in contrast to the relative abundance of planktonic foraminifera (10–70%; max. 82%[varying percentage values of the mainly micritic matrix were not considered for all volumetric calculations]. Most turbidites correlate with peaks of planktonic foraminiferal distribution, except f and h (Fig. 2). Increased quartz content occurs only in turbidites a, d, j, however, with low absolute values of 0.5–2.3%; many of the biogenic particles are fragmented (Melki and Negra, 2008), some are stained with iron oxides.

Similar grainstones of the Abiod Formation and its equivalent (Merfeg Formation) have often been interpreted as (calciturbidites; however, we consider a possible alternative origin for those of Ain Medheker, taking into account microscopical results and palaeogeographic considerations. “Normal” turbidite sequences are usually composed of alternating proximal and distal turbidite beds (e.g., Ortner, 2001). The first are dm- to m-thick, often with internal grading and mostly composed of various particles that are often dominated by shelf-derived material with clastic admixtures, while the second are mm- to cm-thick (e.g., Flügel, 2004). The studied turbidites, however, show constant thicknesses of only up to 2 cm within the whole Abiod succession; bedding types are more irregular with diffuse base-contacts and bioturbation. Their petrographic and biogenic composition is nearly identical to the background sediment, but with higher concentrations of planktonic foraminifera.

We therefore conclude that the turbidites of Ain Medheker either represent bottom-current reworked turbidites, or contourites. Although differentiation between these is not easy (Stow et al., 1998; Sighinolfi and Tateo, 1998), they clearly differ from pure turbidites. Additional arguments for a non-pure turbidite interpretation come from the palaeogeographic position of the AM section close to a submarine swell (Fig. 1A): The turbidities of the section are not derived from shallow-water platform and platform-edge settings, but with a constant biogenic input from (hemipelagic environments, indicating solely deep water sources of allochthonous components (without land connection). Thus they may result from primary accumulations on submarine swells in upper slope environments and later transport along the slope. The observed constant minor bed thicknesses argue against a “normal” turbiditic origin with thickness- and grain-size changes along vertical sections, reflecting changes from proximal to distal positions.

The Abiod deposition of Ain Medheker took place in deeper shelf environments, periodically influenced by submarine slides/slumps and alternating with periods of increased debris flow deposits. Both mass-flow types were possibly caused by different mechanisms: major structural changes, earthquakes, or salt-derived forces are assumed to have activated the thick submarine slides and slumps, while the thin turbidites are interpreted to have been triggered by high rates of sedimentation in regions of dominant pelagic biogenic input. Bottom currents could have released accumulations of pelagic biota (possibly in areas of over-steep slopes), resulting in bottom-current, reworked turbidites, or in contourite deposits in a (south)easterly down-slope position of the submarine swell parallel to the “North–South Axis”-tectonic element.

4.6. Tectonic characteristics

The Late Cretaceous carbonates of the Abiod Formation of Ain Medheker were subdivided into seven mappable units I–VII (Fig. 2) that were deposited during two different tectonic regimes, A and B. Synsedimentary extensional movements prevailed during the Early Campanian (G. elevata Zone) of regime A (unit I), while no imprints of major tectonic activity occurred during the Middle Campanian–Early Maastrichtian tectonic regime B (equivalent to units II–VII of the C. plummerae to G. gansseri zones).

During tectonic regime A, a major normal fault (dipping 27° to the west) cross-cuts the well-bedded carbonates of unit I in the eastern part of the outcrop (Fig. 5A,B) with a vertical displacement of 15 m. Fault-activity stopped at the base of unit II, as indicated by horizontally bedded, undisturbed beds above (Fig. 5B). Within unit I, the three bedded couplets a, b, and c show a gradual thickening towards the fault and at the same time a characteristic drain off to the west (Fig. 5A,B). No rotation of the down-dropped block is visible and thus records syndepositional fault motion and filling of the small graben during the Early Campanian extensional event. Thickness changes across a synsedimentary fault (i.e., growth fault) record differences in elevation of the depositional surface on the footwall and hanging-wall sides of the fault through time. These thickness changes, although modified by compaction, allow the determination of fault throws subsequent to the deposition of each horizon, and hence the reconstruction of the history of fault movement.

Consequently, we assume a local submarine asymmetric graben to be filled with basal Abiod sediments during tectonic regime A, reflecting a N–NE striking graben axis that runs perpendicular/oblique to extensional stress-fields arranged more or less in a NNW–SSE direction.

A comparable tectonic evolution was described by Mabrouk et al. (2005) for the offshore Miskar structure of the Pelagian Shelf. Based on seismic interpretations, these authors identified a major extensional structure following the same time interval within an extensional tectonic stress-field. Dlala (2002) similarly demonstrated for southern Tunisia that extensive tectonic processes persisted until the Campanian–Maastrichtian, evidenced by several synsedimentary normal faults, associated with basaltic lavas. He suggested that the east–west transform fault of the North-
African margin remained active during this period. Syntectonic deposition resulting from combined strike-slip and normal faults, and associated thickness variations have also been described form elsewhere in North Africa during this interval (Guiraud and Bosworth, 1997, 1999).

5. Conclusions

Planktonic foraminifera identified in thin sections and calcareous nannofossils of the Late Cretaceous Abiod Formation of Ain Medheker enable the identification of the following biozones: G. elevata, C. plummerae (replacing the former G. ventricosa Zone), R. calcarata, G. falsostuarii, and G. gansseri, spanning in age from Early Campanian to Early Maastrichtian.

The combination of biostratigraphic and chem stratigraphic data allowed the identification of three major isotopic events: the Santonian–Campanian Boundary Event, the Mid-Campanian Event, and the Late Campanian Event. They underline (together with four minor isotopic events) the stratigraphic similarities between the western (El Khef) and eastern (Ain Medheker) Tunisian realms.

Deposition of the studied section AM was influenced by several mass-flow processes; periods with submarine slides/slumps (gliding towards the southeast) alternate with turbidite intervals, probably caused by bottom-current reworking (contourites). The primary causes for these mass-flow systems may have resulted either from semi-consolidated carbonate material on the slopes or from seismic events, owing to tectonic activity.

The Early Campanian deposition of Ain Medheker was controlled by synsedimentary extensional tectonics (submarine fault-controlled half-graben) that ceased later during Late Campanian times. The observed asymmetrical half-graben may represent a segment of a larger negative flower structure that was inverted during the Miocene compressional regime. Thus, it represents an "original" extensional structure of Late Cretaceous age that is preserved in the "North–South Axis"-tectonic element.

Acknowledgements

BS thanks DAAD (German Academic Exchange Office), Bonn for a 2-year grant to stay at Bremen University. DAAD also supported the fieldwork of JK. We thank Dr. Monika Segl, MARUM Bremen for isotope measurements and Ralf Bätzel, Bremen, for preparation of thin-sections. Many thanks are also extended to S. Melki, Tunis for introducing us to the section. Two anonymous referees are thanked for their constructive reviews.

References

Boccaletti, M., Cello, G., Tortorici, L., 1988. Structure and tectonic signi-

Bralower, T.J., Leckie, R.M., Sliter, W.V., Thierstein, H.R., 1995. An integrated Creta-