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Abstract 

 
Approximately 90% of the seismic moment on Earth is released in often devastating subduction 

zone earthquakes (EQs). In the Integrated Ocean Drilling Program (IODP), the study of 

seismogenesis along an active convergent margin plays a key role in the form of a multi-expedition 

effort named “NanTroSEIZE” (Nankai Trough Seismogenic Zone Experiment). To date, eight 

expeditions (IODP Expeditions 314-316, 319, 322, 326, 332-333) drilled 12 sites along a transect 

from the incoming plate across the frontal accretionary prism to the forearc basin. Two holes are 

currently equippe dwith long-term instruments (C0002, C0010). The project Sonne SO222 MEMO, 

MeBo drilling & in situ long-term Monitoring offshore Japan (Nankai Trough Accretionary Prism), 

aims to extend the long-term monitoring efforts to active mud volcanoes in the northern Kumano 

Basin. These features carry gas hydrates and deep-seated fluids, most likely tapping into the 

seismogenic zone at a depth of several km below seafloor, and are also overlying an area of high 

strains and a locked plate boundary-thrust. Cruise SO222 sampled both mud volcanoes and 

background sediments and installed long-term monitoring devices in key locations. 

 

The main results of the two legs SO222A and SO222B include:  

- The discovery of 5 new, previously not reported mud volcanoes, so that there are 13 

MVs in the Kumano Basin now; 

- Gas hydrate presence in many of the features; 

- Enigmatic pore fluid signatures with high B, Li and Sr, but low Mg in the pore waters, 

suggesting deep-seated fluid origin; 

- Successful installation of of 4 MeBo borehole observatories in a total of six holes drilled 

in appx. 2 km water depth; 

- Successful installation of six CAT flowmeters on the most active mud volcanoes in the 

Kumano field; 

- Successful operation on so-called MeBoCORK observatories with ROV Quest; 

- Recovery of gravity and MeBo cores as well as TV grab that contain a suite of clasts in 

the mud breccias that span the range from soft to hard rocks and cover all grain size 

classes of sedimentary rocks, but also comprise magmatic materials and deformed rocks; 

- Gas composition attests a biogenic origin for the majority of the mud domes visited; 

- Heat flow data attest active flow in at least some of the mud domes; however, 

- No active venting was neither observed by acoustic techniques nor by direct observation 

with ROV or TV-grab. 
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2. Introduction 

The Nankai Trough, Japan (Fig. 1A) is one of the best-studied subduction systems on Earth, and has 

emerged as one key focus of earthquake research since NanTroSEIZE was set up. We here reiterate 

the scientific rationale of CORK (Circulation Obviation Retrofit Kit) instruments, and then introduce 

the regional geology (3.1), the results from NanTroSEIZE drilling operations (3.2), and the main 

objectives of the BMBF-funded MEMO project using RV Sonne during expedition SO222 (3.3), 

where simple CORK instruments were deployed. 

Long-term in situ hydrologic and geophysical measurements in borehole observatories have been 

recognized as a key element in the IODP Initial Science Plan [IODP, 2001], and are also mentioned 

prominently in the new IODP Science Plan “Discovering Earth’s Hidden Frontiers through Scientific 

Ocean Drilling” for 2013-2023. The time series of data provided by long-term observatories are 

critical toward understanding strain and fault slip at plate boundaries, the fluxes of volatiles and 

chemical budgets at subduction systems, and the role of fluids in mechanical, chemical, biological, 

and thermal processes beneath the seafloor. Over the past several years, long-term observations of 

pore pressure, temperature, and fluid chemistry in sealed ODP/IODP boreholes have produced a 

wealth of data that have significantly advanced our understanding of subseafloor deformation and 

hydrogeology. For example, monitoring of pore pressure and temperature coupled with continuous 

sampling of pore waters for chemical analysis have provided constraints on fluid flow systems 

associated with globally significant transport of heat and solutes [e.g., Davis & Becker, 1994, 2001, 

2002; Becker et al., 2004; Fisher et al., 1997]. Direct measurement of ambient pore pressure attested 

the key role of fluids in impacting fault mechanical behaviour [e.g., Foucher et al., 1997; Becker et 

al., 1997]. The analysis of tidally-driven pressure changes has provided a powerful means to quantify 

formation and fluid elastic and hydrologic properties in many settings – and potentially to resolve 

changes in formation properties associated with strain events [e.g., Becker & Davis, 2003]. 

 
Figure 1: A) Satellite view of the island of Japan with the Nankai Trough drilling area marked. B) Locations of VLF 

earthquakes (M 3.5-4.4) in the Nankai Trough in 2003-2004 [from Obara & Ito, 2005]. Focal mechanisms and locations 
for the events off Kii Peninsula are consistent with reverse faulting within the accretionary wedge. 
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Recent observations of fluid pressure transients have been linked to both coseismic and 

interseismic deformation [Husen & Kissling, 2001; Davis et al., 2001, 2006], highlighting the 

potential to characterize patterns of strain accumulation and release through the seismic cycle. These 

transients cover a wide range of temporal scales and reinforce seismological and geodetic 

observations that indicate e.g., episodic slow slip [e.g., Rogers & Dragert, 2003; Obara et al., 2004], 

aseismic creep [Davis et al., 2006], and earthquakes with an anomalously large low-frequency source 

component [e.g., Obara & Ito, 2005; Obara et al., 2004; Ito & Obara, 2006] (see also Fig. 1B). 

Seafloor observations of fluid expulsion have also documented links between subduction zone 

seismicity and hydrologic processes in the shallow subsurface [Brown et al., 2005]. Although such 

studies have locally provided exciting in situ observations, a quantitative understanding of the 

relationship between fault slip processes and associated strain, pore pressure, and fluid flow in the 

surrounding sediment (and crust) has been lacking both detail and wide spatial coverage. To 

overcome these deficits, a network of collocated observatories for pore pressure, seismicity, and strain 

is needed [Davis et al., 2006]. 

When translated to the Nankai Trough subduction zone (Fig. 2A), two CORK systems are 

presently in operation along the Muroto transect, Central Nankai (Sites 808 and 1173, open circles). 

In addition, two borehole observatories have very recently been installed along the Kii transect (Fig. 

2B, Sites C0002 and C0010 – for details see below). Although the proposed new observatories to be 

installed with the MeBo drill rig are not part of the NanTroSEIZE operations sensu stricto, they aim 

at understanding the hydrologic behavior of the Japan subduction megathrust and use mud volcanoes 

juxtaposing deep-seated faults. Multi-phase, multi-expedition drilling off Cape Kii extends from the 

Kumano forearc basin all the way out to the subducting Philippine Sea Plate, and overlies a zone of 

coseismic slip along the plate boundary during the 1944 Tonankai M 8.2 earthquake, as defined by 

seismic waveform and tsunami inversions [Tanioka & Satake, 2001; Ichinose et al., 2003; Kikuchi et 

al., 2003] (Fig. 1B, shaded area). The series of drillsites serves to (i) characterize the subduction 

inputs (including basement) and penetrate both the plate boundary thrust and a mega-splay fault 

initiating from it in several locations and depth levels (see Fig. 2). Pore pressure monitoring in the 

observatories of some selected drill sites (C0002, C0009, C0010 curently envisaged) will achieve 

three main scientific objectives: (i) document ambient pore pressures at several depth intervals, (ii) 

provide constraints on formation elastic and hydraulic properties from the response to tidal loading at 

the seafloor, and (iii) record hydraulic transients related to strain and/or episodic fluid flow. Obtaining 

reliable measurements of ambient pore pressure will provide insight into hypotheses invoking fluids 

as a cause of mechanical weakness in faults and wall rock, and constrain regional scale models used 

to estimate pore pressures at greater depths [e.g., Screaton et al., 2005]. Hydraulic transients can be 

used as a highly sensitive proxy for volumetric strain, and offer the opportunity to investigate the 
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relationship between fluid pressure, strain accumulation, and fault slip at an active margin [e.g., Davis 

et al., 2001, 2004, 2006]. All downhole pore pressure monitoring systems have to be complemented 

by high-resolution temperature monitoring as these data provide a simple means of controlling the 

integrity of the borehole seals at the seafloor as well as sensitive indicators of transient pore water 

flux events [Heesemann et al., 2006].  

 
Figure 2: Location map showing locations of previous DSDP and ODP Nankai Trough drilling and planned 

NanTroSEIZE drillsites. A) Map of western (Cape Ashizuri transect) and central (Cape Muroto transect) Nankai drilling 
including site numbers. The open circles show present CORK installations. B) Map of NanTroSEIZE drill sites to date 

[from Kopf et al., 2011]. Data for this proposal will be obtained from the Kumano mud volcano field marked by the pink 
circle. 

 

Given that pore water flux plays a crucial role in the pressure evolution, and added advantage would 

be to also use hydraulic pore pressure lines for fluid sampling. This has been done in ODP/IODP for 

two decades, and the majority of the boreholes CORKed and used for sampling were located in 

oceanic crust (or sediments overlying crust). Among the large number of scientific papers having 

originated from those observatories and fluid studies, three articles are of particular interest to the 

general scientific community and also of relevance for what is proposed for the MeBo CORKs (this 

proposal). One is a compilation of first-order scientific results spanning hydrogeological, physical and 

geochemical conclusions [Kastner et al., 2006]. The other paper highlights the evolution of CORK 

design and physical sensors, methods of submersible operation, and an outlook for future work and 

funding pathways [Becker & Davis, 2005]. The third manuscript focuses on fluid sampling 

capabilities and chemical sensors associated with CORK observatories during the past two decades 

[Wheat et al., in press] and outlines a number of pitfalls in this field which we aimed to avoid when 

deploying much simpler, smaller and affordable MeBo CORK instruments (see Ch. 3.3). 
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In subduction zones, large volumes of sediment are underthrust and eventually undergo diagenetic, 

metamorphic, and magma generation processes. Sediment has been shown to re-emerge in arc 

volcanoes based on typical geochemical signatures such as Be isotope values or depletion of high 

field strength elements (HFSE) relative to light rare earth elements (LREE) and large ion lithophile 

elements (LILE) at the volcanic arc (e.g. Tera et al., 1986; Morris et al., 1990; Brenan et al., 1995; 

Plank and Langmuir, 1998; Elliot et al., 1997). Afterwards, part of the sediment residue continues to 

sink into the mantle and becomes one of the potential sources of mantle plumes and/or heterogeneities 

(e.g., Kogiso et al., 1997; Kamber and Collerson, 2000). Despite the improvements of geophysical 

investigation techniques and numerous DSDP and ODP expeditions, there is a clear lack of 

understanding of the physico-chemical processes attendant to the subduction of sediment. This is 

particularly true for the mechanical processes controlling the the location and frictional behaviour of 

the plate boundary fault, but also regarding processes of fluid-rock interaction, mineral 

transformation, and devolatilisation that affect chemical cycling as well as effective strength of these 

materials (e.g. Dia et al., 1995; Johnson & Plank, 1999; Bebout et al., 1999). In the so-called 

subduction factory, there is a fundamental difference between the inputs (i.e. incoming sediment and 

crust as well as material from frontal and basal subduction erosion) and outputs, most importantly 

accretion, underplating, fluid release, and arc and back-arc magmatism (Fig. 3). We suggest to regard 

mostly the fault-driven fluid release originating from the frontal and intermediate loop (Fig. 3), which 

will be quantified in situ using CAT fluxmeter systems (Tryon et al., 2001). Five of those systems 

were placed in key location in the northern part of the MedRidge during expedition P410 (Kopf et al., 

2012) and are to be recovered during the cruise proposed here. The locations chosen were either 

surface outcrops of deep-seated faults or mud volcanoes believed to be actively emitting fuids from 

depth. 

 
Figure 3: Schematic diagram of subduction zone devolitilisation in the frontal (short loop) as well as landward part of the 

forearc (intermediate loop) as well as the volcanic arc (big loop). 
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The interaction between solid sediment particles and trapped pore water has profound physical and 

chemical repercussions and starts immediately after deposition on the seafloor. Consolidation may 

only occur if the fluid pressure from the pores can dissipate; otherwise pore pressures build up and 

counteract cohesion and reduce the mechanical strength of the sediment. This has first been described 

by Hubbert & Rubey (1959) and ever since has been a matter of controversial debate (see e.g. Byerlee 

[1978] vs. Rice [1992]). In addition to the physical properties, chemistry of the solids and fluids is 

also affected after deposition (in particular the ad-/desorption processes on clay minerals). Both 

mechanical pore space reduction and diagenetic reactions cause a decrease in permeability. Processes 

active include clay mineral dehydration, alteration of biogenic opal, zeolite formation, dissolution of 

metastable mineral phases, to name just a few (see summary in Moore & Saffer, 2001). Such 

diagenetic to low-grade metamorphic processes may mobilise major (such as K, Na, Ca, Mg, Fe, S, 

and Si) and minor components (e.g. Cl, Ba, B, Sr, Cs, Li, Rb) as well as many other trace elements as 

a result of dissolution and mineral transformation processes (see summary in Guangzhi, 1996). The 

resulting supersaturated pore fluids may cause precipitation and hence significantly modify the fabric 

(Kawamura & Ogawa, 2004) as well as the strength and permeability of the sediment (Bjorlykke & 

Hoeg, 1997; Dewhurst et al., 1999), its mineralogy, and chemical composition of the pore fluid 

residue.  

Mud volcanism has been demonstrated to be a global phenomenon, which is commonly associated 

with compressional tectonics and sediment accretion at convergent margins (see review by Kopf, 

2002). Mud domes and diapirs frequently occur in marine subduction zones at the plate boundary near 

the toe of accretionary prisms (Henry et al., 1996), further landward in the forearc (Mascle et al., 

1999), but also on land where collisional processes and deformation are more accentuated (Lavrushin 

et al., 1996). Irrespective of the tectonic compression, the main driving force of mud extrusion is the 

negative buoyancy of the clay-rich material at depth. Fluids may either be trapped as a result of high 

sedimentation rates or lateral influx into clay-bearing sediments, or may be generated in situ owing to 

processes such as mineral dehydration reactions and hydrocarbon generation at greater depth (e.g. 

Hedberg, 1974). Quiescent as well as catastrophic emission of greenhouse gases (mostly methane) 

accompanies extrusion and may contribute significantly to climate change (Higgins & Saunders, 

1974; Kopf, 2002).  
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Figure 4: a) Results from B analysis on fluids and solid particles from hydrothermal deformation tests of smectite (sm)-, 
illite (il)- and quartz (qtz)-rich endmember sediments off Japan (from Kopf et al., 2002); b) Data compilation from MV 

study using B fractionation and paleo-T to estimate the depth of mud- and fluid mobilisation (from Kopf & Deyhle, 2002).  
 

When returning to the subduction factory cycles (Fig. 3), mud volcanism and deep-seated faults may 

help illuminate the intermediate loop. Numerous authors have used the mobile element Boron and its 

stable isotope ratio (δ11B) to illuminate processes in the moderate T window of subduction zones 

(Spivack et al., 1987; You et al., 1993, 1996; Kopf et al., 2000; Deyhle & Kopf, 2001, 2002). These 

studies on natural samples and from hydrothermal experiments suggest that B is a powerful proxy 

with a wide variety of δ11B values for different subduction inputs and related diagenetic reactions. 

Examples of the proponent’s evolvement in these studies are given in Figure 4 and have been 

wrapped up in various publications (oral and as manuscripts; see Kopf & Deyhle, 2002; Deyhle & 

Kopf, 2001, 2002, 2005). The work attested that there are well-defined trends for B processes in 

selected silica systems such as clay-dominated ones (Kopf & Deyhle, 2002), but not in all of them 

(Deyhle & Kopf, 2005). 
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3. Regional geology 

3.1. The Nankai Trough subduction zone 

The Nankai Trough accretionary complex is formed by the northwestward subduction of the ~15 

Ma Philippine Sea plate below the Eurasian plate along the Nankai Trough at ~65 km Myr-1 

[Miyazaki & Heki, 2001] down an interface dipping 3°–7° [Kodaira et al., 2000] (Fig. 1). Nankai is a 

sediment-dominated subduction zone, much as the East Aleutian and Cascadia systems, characterized 

by repeated occurrence of great earthquakes of ~Mw 8.0 [Ruff & Kanamori, 1983]. Although the 

causative mechanisms remain poorly documented [Byrne et al., 1988; Vrolijk, 1990; Hyndman et al., 

1997; Moore & Saffer, 2001; Saffer & Marone, 2003], the up-dip limit of the seismogenic zone at 

these margins is thought to correlate with a topographic break along the outer rise [e.g. Byrne et al., 

1988, Wang & Hu, 2006]. Nankai is among the most extensively studied subduction zones in the 

world; it has been selected as a focus site for studies of seismogenesis based on the wealth of 

geological and geophysical data available, a long historical record of great (M>8.0) Eqs [e.g., Ando, 

1975], and direct societal relevance of understanding tsunamis and earthquakes to the heavily 

populated coastal area. The region offshore the Kii Peninsula on Honshu Island has been identified as 

the best location for seismogenic zone drilling for several reasons. First, the rupture area of the most 

recent great earthquake, the 1944 M 8.2 Tonankai event, is well constrained by recent seismic and 

tsunami waveform inversions [e.g., Tanioka & Satake, 2001; Ichinose, 2003; Kikuchi et al., 2003]. A 

region of significant coseismic slip (1-2 m) is reachable by drilling with the DV Chikyu, which is 

currently limited to 2500 m water depth (Fig. 2b). Second, the region offshore Kii is generally typical 

of the Nankai margin in terms of heat flow and sediment on the incoming plate. Previous drilling 

(DSDP and ODP drilling on Legs 31, 131, and 190) offshore Cape Muroto on Shikoku Island (~150 

km to the southwest) found anomalously high heat flow and lithostratigraphy associated locally with 

basement highs. Third, OBS campaigns and on land geodetic studies (though of short duration) 

indicate significant interseismic strain accumulation [e.g., Miyazaki & Heki, 2001; Obana et al., 

2001]. 

 

3.2. The IODP NanTroSEIZE project 

Nankai is a sediment-dominated subduction zone, and has been selected as a focus site for studies of 

seismogenesis based on the wealth of geological and geophysical data available, a long historical 

record of great (M>8.0) EQs [e.g., Ando, 1975], and direct societal relevance of understanding 

tsunamis and earthquakes to the heavily populated coastal area. Drilling into the seismogenic zone 

was advocated by an international group of proponents who submitted a Complex Drilling Proposal 

(CDP) with three major phases of operations. Phase 1 drilling targets the incoming sediments and 
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ocean crust to characterize their physical properties, composition, and state (pore pressure and 

temperature). Phase 2 is focused on the investigation of a major splay fault system implicated in 

coseismic rupture, and includes penetration of the fault at several depths ranging from ~1 to 3.5 km 

bsf. Phase 3 proposes to sample and instrument the plate interface at ca. 6 km bsf, in a region 

predicted to be both capable of generating seismogenic behaviour and in the zone of co-seismic slip in 

the 1944 Tonankai EQ.  

Until now, the first two stages of NanTroSEIZE have been completed and the third one has 

started. Stage 1 of the NanTroSEIZE science plan included three coordinated non-riser drilling 

expeditions. Eight sites were drilled across the continental slope and rise offshore the Kii Peninsula, 

many within the inferred coseismic slip region of the 1944 Tonankai M 8.2 EQ. The first expedition 

to all of the Stage 1 drilling sites (Exp 314: LWD transect) used Logging While Drilling (LWD) to 

define physical properties, lithostratigraphy, and structural information in advance of coring 

operations. This was followed by the first CDEX coring expedition (Exp 315: Mega-Splay Riser 

Pilot) aimed at sampling the materials and characterizing in situ conditions within the accretionary 

wedge to a depth of 1 km bsf at Site C0001 across the deep “mega-splay” out-of-sequence thrust. This 

site also serves as a pilot hole for later Stage 2 riser drilling targeting the "mega-splay" fault at a depth 

of ~3-3.5 km bsf. A third non-riser expedition (Exp 316: Shallow Megasplay and Frontal Thrusts) 

targeted another shallow fault zone of the “mega-splay” system in the older accretionary prism (Site 

C0004) as well as the frontal thrust at the toe of the young accretionary prism (Sites C0006 and 

C0007). 

The locations drilled by DV Chikyu during Stage 1 are Sites C0001 through C0008, as shown in 

shown in Figure 3B. The general results by Stage 1 drilling along the NanTroSEIZE transect are 

briefly summarised in an article for Scientific Drilling [Tobin et al., 2009] and can be found on the 

IODP website in full detail [see Kinoshita et al., 2009]. A hole seaward of the frontal splay fault 

revealed frequent mass wasting deposits, potentially related to (EQ-) activity of this out-of-sequence 

thrust [Strasser et al., 2009]. Other results from Stage 1 drilling reveal new insights into the stress 

history and temporal evolution of the Nankai forearc. First, there is no discontinuity in the 

depositional record between thick forearc basin sediments and the underlying Late Miocene accreted 

strata (C0002). Second, both borehole breakouts (LWD results) and the orientation of structural 

measurements on cores suggest a pattern of compression parallel to plate convergence in the wedge, 

trench-parallel extension above the branches of the mega-splay fault (in particular Site C0001), 

overlain by trench-orthogonal normal faults in the forearc and below, suggesting predominantly 

extensional stresses in the overriding accretionary system. Third, the fault zones are highly active 

given immense problems in borehole stability and core recovery at Sites C0001, C0004, and C0006. 

The initial Stage 1 shipboard data serve to put forward preliminary hypothesis on the displacement 
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history along the mega-splay and frontal thrust faults.  

NanTroSEIZE Stage 2 operations with DV Chikyu took place in 2009 with Exp 319 “Riser 

drilling and observatories” and Exp 322 “Subduction Inputs”. The drill holes of NanTroSEIZE Stage 

2 are C0009 – C0012 (Fig. 3). Exp 319 aimed to conduct deep Riser drilling of a hole (C0009) 

through the Kumano Basin fill into old accreted strata of the Nankai wedge overlying the locked 

subduction thrust. Drilling added detail to the understanding of the history of the Kumano forearc 

basin, and indirectly the activity of the splay fault system over time. The updip-end of the splay fault 

was the focus of the second site of Exp 319, where a cased drillhole (C0010) was placed 3 km along-

strike of C0004 (Fig. 2B, 5). This hole penetrated the shallow portion of the mega splay fault in appx. 

420 mbsf (meters below sea floor), and terminated at appx. 560 mbsf. The interval where the fault 

zone was interpreted to be from LWD data had been prepared with a 22 m-long section of perforated 

casing screens, which allow fluids to enter the lower portion of the borehole [see Saffer et al., 2009]. 

Hole C0010A was the first NanTroSEIZE hole where an observatory was deployed (Fig. 4). This 

temporary system represented the first simple observatory off Kii and measured P and T over time. 

The second Stage 2 expedition, Exp 322, followed immediately to characterise the input into the 

subduction system in the abyssal plain and on a topographic high, both represented by Sites C0011 

and C0012.   

 Two more Stage 2 expeditions followed a year later: Exp 332 exchanged the temporary mini-

CORK observatory at C0010 with an upgraded system, and further deployed the first permanent 

CORK at Site C0002 (see Ch. 2.3.). Immediately afterwards, Exp 333 completed what was not 

finished during Exp 322 at Sites C0011 and C0012, and further drilled a hole into a mass-wasting 

complex on the upper slope of the Nankai margin (C0018). 

 
Figure 5: Seismic reflection profile across the NanTroSEIZE area including drillsites relevant for this proposal.  
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Expedition 332 has been the most successful NanTroSEIZE expedition to date where major 

milestones of the project were reached [Kopf et al., 2011]. The cruise focused mainly on engineering 

work, including (1) the permanent observatory installation at Site C0002 in the outer Kumano Basin, 

at the location of planned future deep riser drilling, (2) the retrieval of a temporary mini-CORK 

observatory instrument installed during Exp 319 at Site C0010, which penetrates the shallow “mega-

splay” fault in the mid-forearc, and installation of a new suite of temporary sensors, and (3) the 

deployment of an upgraded temporary observatory at Site C0010.  

At Site C0002, a new hole was drilled with LWD and cased for placement of a Long-term borehole 

monitoring system (LTBMS). It comprises a CORK assembly with a hydrogeological unit measuring 

pressure at four depth levels as well as a broadband seismometer, volumetric strainmeter, tiltmeter, 

geophones, and a thermistor string (see Figs. 6, 7). The key goals include pore pressure monitoring in 

the upper accretionary prism (Unit IV), a series of measurements in the homogeneous sediments of 

Unit III (strain, tilt, seismicity, pressure) in the transition zone, and temperature and pressure in the 

overlying Kumano Basin sediments of Unit II. The string of the CORK assembly had a total length of 

965 m and was carefully secured during deployment with centralizers, bands and straps to withstand 

the strong current.  

 
Figure 6: Schematic of the CORK assembly at Site C0002, as set during IODP Expedition 332. 
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The lower portion of the assembly is isolated against the overlying ocean body by a swellable packer 

at 746 mbsf. Part of the instrument string below was cemented (appx. 780-935 mbsf) to couple 

strainmeter and seismometer to the formation/casing. The CORK head was revisited prior and after 

cementing for system tests of the borehole instruments using the ROV, and all of these experiments 

were successful. The CORK is working in a self-contained (battery-driven) mode for some of the 

instruments, while others will be connected to external batteries in spring 2013. The long-term 

perspective is a connection of the system to the real-time seafloor cabled network DONET.  

 

 
Figure 7: The sensors and placement on the LTBMS CORK observatory at Site C0002. The different sensor packages and 
their arrangement on the downhole and CORK head sections are shown in photographs taken during deployment. A. The 

Pressure Sensing Unit (PSU) an independent sensor array mounted on the CORK head. B. CORK head and ROV 
platform. C. Sensor carrier, with a geophone & accelerometer assembly, a stand-alone heat flow meter (SAHF) digitizer 

for the thermistor string, LILY tiltmeter, and a CMG-3T Guralp seismometer. D. Strainmeter and sensing volume. E. 
Cartoon diagram of the Site C0002 CORK observatory. 
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At Site C0010 further downslope, the focus was on exchanging the SmartPlug (Fig. 8) temporary 

“mini-CORK” with an upgraded GeniusPlug, both attached to a retrievable casing packer above the 

screened megasplay fault zone at Site C0010. SmartPlug recovery was successful despite the strong 

Kuroshio current, which can be attributed to an efficient reduction of vortex-induced vibration (VIV) 

on the drill string by attaching ropes. Times series data recovered from the self-contained instrument 

include seafloor and formation pressure as well as 4 independent temperature records from the fault 

zone and the overlying seafloor reference. Tentative analysis of those data proves the effective seal of 

the bridge plug, dampened pressure amplitudes in the tight, slightly overpressured formation, and 

identification of prominent earthquake and tsunami events in the 15-month record (23 Aug 2009 – 7 

Nov 2010). Once the SmartPlug was secured, a GeniusPlug (named like that since, compared to the 

SmartPlug, it additionally comprises an osmo-sampler for 24 months of fluid sampling plus a FLOCS 

unit for microbiological research [Orcutt et al., 2010] in the splay fault) was deployed at C0010.  

 
Figure 8: “Mini-CORK” observatory consisting of a retrievable Bridge Plug to separate the borehole from the overlying 
ocean water hydraulically (left, top), and a pore pressure instrument attached to bridge plug (left), additionally secured by 

tack-welding (middle), and at the drill string in appx. 2500 m waterdepth prior to re-entry of hole C0010A (right). 
 
The SmartPlug record nicely shows an increase in pressure and decrease in temperature as the 

instrument is entering the water and being lowered towards and into the seafloor. Thereafter, 

equilibration starts, and data attest that the bridge plug effectively sealed the borehole, because upon 

re-entry of the drill string and latching onto the device during Expedition 332 the upward-looking P-

sensor shows a strong fluctuation owing to displacement of borehole fluid whereas the downward-

looking P-sensor encounters no such interference and remains at a near-constant value [Kopf et al., 

2011]. A cursory review of the data identified multiple pressure and – to a lesser extent - temperature 

excursions that may be related to seismic events, although further detrending and processing of the 

data are required to filter the tidal signal and resolve pressure anomalies.  
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3.3. The MEMO project 

The acronym MEMO stands for MeBo drilling and in situ long-term monitoring offshore Japan: 

Nankai Trough Accretionary Prism. It is funded by the German Ministry for Education and Research 

(BMBF) and tied to two legs on RV Sonne. 

As outlined above, the purpose of the NanTroSEIZE project is to study fault zone processes to 

gain a greater understanding of seismogenesis. One aspect of this is to investigate the role of fluids 

and fluid genesis as they are thought to play a major role in the transition from aseismic to 

seismogenic behavior. One of the expected outcomes of NanTroSEIZE stages 1 and 2 was to find 

evidence of long-distance travel of fluids along fault-controlled conduits. Such fluids would be 

expected from dehydration reactions at depth that drive up fluid pressures and, thus, fluid transport. 

Such fluids have been sampled at other convergent margins (e.g. Hensen et al., 2004), farther SW on 

the Nankai forearc (Moore et al., 2001), and to the north at the Japan trench forearc (e.g. Deyhle et al., 

2003). These fluids carry with them a record of water-rock reactions occurring in the region of the 

transition from aseismic to seismogenic behavior. At this time, however, all fluids sampled during 

NanTroSEIZE appear to be entirely, or very nearly so, produced in situ. Given this enigmatic lack of 

evidence for deep-sourced fluids trenchward of the Kumano Basin, it seems prudent to seek such 

evidence arcward. Therefore, the purpose of the MEMO research program is to extend the fluid 

sampling arcward of the NanTroSEIZE transect into the northern Kumano Basin to test the following 

hypotheses: 

- Much, if not most, of the chemically bound water released from depths corresponding to the 

transition from aseismic to seismogenic behavior are being transported via the subduction factory’s 

intermediate loop (Fig. 3), i.e. upwards through the wedge via faults and the fractured upper plate. 

- The Kumano Basin mud volcanoes tap these fluids and may provide insights on fluid genesis and 

pathways within the Nankai forearc. 

- The mud volcanoes root deeply and, by providing hydraulic pathways, may allow to monitor EQ 

precursors if long-term instrumentation is installed in the most active regions of those features. 

To this end, we will be carrying out a research cruise aboard the R/V Sonne (Project MEMO). During 

the project we will collect gravity and MeBo cores and install long-term monitoring instruments to 

test the above and other hypotheses regarding physico-chemical processes occurring within the 

Kumano Basin mud volcanoes, their roots, and their fluid sources at depth. The MEMO project has 

multiple objectives, many directly related to the NanTroSEIZE objectives, but also others more 

directly related to the ongoing investigation of the nature and global significance of mud volcanoes. 

The project is a collaboration between German, Japanese, and American scientists whose 
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investigations aim to answer the following questions: 

• How stable (i.e., mechanically competent) are the forearc basin sediments and the extruded 

mudflows? What are the physical parameters of the sediment that control the slope stability and 

geometry of the mud volcanoes? 

• Can we provide a chronology of activity by dating the individual mud flows interspersed with 

hemipelagic sediments of the dome flank (typical "Christmas tree" structure; e.g. Robertson et 

al., 1996)? Can these be related to paleo earthquakes? 

• Is there evidence of deeply mobilized fluids? To what extent are the exotic chemical signatures 

of the Nankai prism further south and the Japan prism to the north, seen in the arcward regions 

of the Nankai forearc? Can we determine which processes release these fluids? Can such 

geochemical patterns originate from seismogenic depth (i.e., 6 km or more)?  

• Can fresh water and characteristic oxygen isotope signatures be found, indicating that gas 

hydrates are decomposed in the active mud volcano (as is suggested by the broken BSR). 

• Is the heat flow in the active mud volcano higher than in its inactive counterpart? How does this 

relate to the estimated temperatures in the Kumano basin where the NanTroSEIZE campaign 

will aim for their deepest borehole (Phase 3), some 5-7 km below the seafloor?  

• Can one detect correlated regional seismicity, transient pore pressure changes, and fluid flow 

rate changes in the mud volcano? How do these compare to CORK measurements further south 

and other DONET stations in the neighbourhood? 
 

 
Figure 8: Most prominent mud volcanoes in the northern Kumano Basin. 
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The Kumano basin is ideal for this study for several reasons. First, it represents the northward 

prolongation of the NanTroSEIZE transect with a huge geophysical data set (e.g. 3D multi-channle 

seismic reflection data; Moore et al., 2009; Bangs et al., 2010) and several IODP drill holes in its 

southern (C0001, C0002) and central (C0009) part (Kinoshita et al., 2009; Saffer et al., 2010). 

Second, long-term information about seismicity and other phenomena is available from both seafloor 

installations (e.g. DONET cabled network; see Fig. 9) and IODP borehole observatories at Sites 

C0002 and C0010 (Kopf et al., 2011). Third, earlier investigations by D/V Chikyu as well as by ROV 

attested deep seated fluids and methane emission at e.g., MV #5 (Tsunogai et al., 2012). 

 

 
Figure 9: Layout of DONET cabled network in the northern Kumano Basin. 
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There are two fundamentally different objectives of the MEMO project: 

1) The use of certain parameters to detect EQ precursors as well as co-seismic and post-seismic 

transients (P, T, geochemical variations in the pore water composition and flow rate) and their 

relationship to regional seismicity. This goal is to be achieved by long-term installations. 

2) The study of mud volcanic products to assess the depth of origin of the solid (clay-mineral rich 

matrix, clasts) and the fluid phase (headspace gas, gas from gas hydrate dissociation, pore waters). 

This goal is to be reached using samples taken during cruise SO222. 

 

Objective 1: Long-term observations of MV activity  

MeBo instruments 

It is well documented that pore pressure in boreholes responds to tectonic strain events in a range of 

settings, both onland (e.g. Roeloffs, 1996) and in subseafloor formations (e.g. Davis et al., 2001, 

2004). Existing data indicate that such transient hydrologic events are common both at ridges and 

subduction complexes, having been observed in CORK systems, by seafloor seepage meters, and by 

changes in seismic velocity (e.g. Davis et al., 2001, 2004, 2006; Husen & Kissling, 2001; Kastner et 

al., 2005; Kopf et al., 2011). The pore pressure response to such events can be divided into two 

components: First, strain in the surrounding rock volume results in an initial change in pore pressure. 

The magnitude of this effect depends upon the compressibility of the rock (less compressible rock 

yields a larger pore pressure signal), and the magnitude of the strain signal (larger signals lead to 

larger pore pressure changes) (e.g. Ge & Screaton, 2005). Second, diffusion occurs in response to the 

initial strain-induced pore pressure changes, with a rate that scales with formation hydraulic 

diffusivity (the ratio of hydraulic conductivity to specific storage). 

The first component, i.e. the pore pressure transients with time, will be monitored with MeBo 

borehole instruments, while the diffusion-related response can be characterised by geotechnical 

testing on core materials (see next section). The MeBo CORK instruments were designed to 

hydraulically decouple the drill string, which remains in the hole once it is completed as  casing, from 

the overlying water body. This has been achieved by two fundamentally different designs, the MeBo 

CORKs and the MeBo-Plugs. The instruments have in common that their backbone-parameters are P 

and T, monitored in self-contained mode over time. 

Onshore observations indicate that mud volcanoes tend to erupt before, during and shortly after large 

EQs (e.g. 1906 San Francisco EQ, 1960 Chile, EQ, 1964 Alaska EQ; see Panahi, 2005). In other 

areas, both the flow rate and composition of gaseous and aqueous fluids changes as a result of 

seismicity (Martinelli & Ferrari, 1991; Bagirov et al., 1996; Chigira & Tanaka, 1997; Mellors et al., 

2003; Kopf et al., 2010). In the Caucasus collision zone with hundreds of active MVs, crustal and 
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mantle gas is released weeks prior to large EQs whereas the ionic composition of pore fluids changes 

a few days prior to the seismic event (Guliyev, 1992). Several changes produced by EQs have been 

proposed as MV triggers, including mud liquefaction (Manga et al., 2009) increased hydraulic 

permeability (e.g. Rojstaczer et al., 1995) and bubble nucleation or growth. Previous studies indicate 

that transient hydrologic events related to EQs are common in various geological settings and may be 

triggered in the near- or far-field (Chigira & Tanaka, 1997; Davis et al., 2004; Kopf et al., 2011). 

MVs are ideal stress indicators because of their fluid-rich nature and hydraulic connection to depth. 

They function similar to a valve; stress changes from deformation before, during and after EQs may 

be discernable as transients in pore pressure, fluid chemistry, and mud or gas discharge rates. 

Therefore, mud volcanoes and sites of active seepage (e.g. pockmarks) are well suited for monitoring 

strain and seismicity using a number of proxies: P, T, fluid chemistry, to name just a few. The 

governing process in changes of any of the above is elevated permeability as a result of seismic wave 

propagation (Elkhoury et al., 2006) and subsurface fluid flow, as documented onshore (e.g. Brodsky 

et al., 2003) and offshore (Johnson et al., 2000). Out of several available physical parameters, we rely 

largely on pore pressure (pP) and temperature (T), which are straightforward to measure with 

affordable, reliable transducers. Pore pressure functions as a strainmeter given the quasi-

incompressible nature of formation waters, and increases in areas of incipient deformation (Davis et 

al., 2004), fluid flow (Solomon et al., 2009), strong ground motion from EQs (Kopf et al., 2011), or 

degassing (Linde et al., 1994). Variations of permeability in the vicinity of the instrument affect the 

amount of pore pressure, fabric of sediments/rocks, and the hydrological properties of faults 

(Rojstaczer et al. 1995). Temperature (T) measurements are simple and benefit from the effective heat 

capacity of water. Surface heat flow data are readily available in many marine settings, so that 

extrapolation to the ambient T at depth may be meaningful. Dey & Singh (2003) have demonstrated 

that, with some uncertainty, the amount of heat flow increase prior to a large EQ is proportional to the 

magnitude. 

The detailed instrument design of the MeBo CORKs and MeBo-Plugs will be outlined below. 

 

Flowmeters 

Chemical and Aqueous Transport (CAT) meters (Tryon et al., 2001) have been in use for over a 

decade and have played a major role in quantifying the flux of water from benthic seeps, its impact on 

geochemical cycles and biological systems, and the nature of the driving forces of seepage in a wide 

range of settings (e.g. Tryon et al., 1999; 2002; 2004; 2010a; 2010b; Labonte et al., 2007). A 

description of the instruments can be found in the Facilites section of this proposal. In brief, these 

instruments are capable of recording a temporal record of fluid flow through the sediment surface in 

the sub mm to 10s of meters range at a temporal resolution of a few days. They also continuously 
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collect fluid samples for later analysis, both for temporal changes in chemistry and to collect samples 

of fluid unaffected by coring and more specifically targeted to active expulsion sites than is often 

possible with coring. 

The primary purpose of the CAT-meter deployments is to look for correlations between flow rates at 

seeps, regional seismicity (DONET, NanTroSEIZE CORKs and onshore stations), and pore pressure 

transients at the instrumented boreholes (MeBo as well as NanTroSEIZE). Such correlations have 

been observed with these instruments at a very large and highly gas-charged submarine mud volcano 

on the Nile delta (Brückmann et al., 2010) and by other instrumentation in Dashgil MV on land (Kopf 

et al., 2010). Questions to be directly addressed are: Is this correlation typical of mud volcanism or 

only for the largest and most gas-rich volcanoes? Alternatively, is it more typical for mud volcanoes 

and the fluid flow systems within them to respond to their own internal cycles driven by the buildup 

of gas and/or pore pressure? We will also collect a time series of samples of the fluid being emitted. 

This will augment the core pore fluid sampling as we will be able to more directly target fluid 

emissions, however, this is by no means an alternative to coring as we will not be able to analyse the 

fluids for the more reactive or ephemeral species due to the long storage time in the sample coils. 

 

Objective 2: Study of MV products  

Solid phase 

Working on the solid phase of mud volcano ejecta offers a wide range of investigations regarding the 

nature and physical properties of the materials. The first shed light on the types of materials (matrix as 

well as embedded clasts, if present), their origin from a regional (provenance) as well as tectono-

stratigraphic (mobilisation depth) perspective, and geological evolution with time. Measurement of 

physical properties on discrete samples help explain the mechanism of ascent and emplacement and 

define crucial geotechnical parameters such as permeability, hydraulic diffusivity, viscosity, or shear 

strength.  

The mud matrix usually originates from deeper levels than the clasts, because the majority of the 

latter is believed to be collected during ascent along a fault or conduit (Robertson et al., 1996; Kopf, 

2002). Since the matrix usually contains large amounts of clay minerals, illite crystallinity or 

smectite-illite ratios are indicative of a certain degree of thermal maturation. The same is true for 

matured organic matter so that vitrinite reflectance has been demonstrated to be powerful in 

reconstructing MV mobilisation depths (e.g. Schulz et al., 1997; Kopf et al., 2000). Physical 

properties of the matrix unravel the ascent history and fluid content, and may range from stiff, low-

porosity mud (often from shear-enhanced dewatering at the outside of a conduit) to gooey mousse 

with gas pockets (Emeis et al., 1996; Kopf et al, 2012a, b). Polymictic clasts are a powerful hint 
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towards mobilisation depth as well, in particular if the regional tectono-stratigraphy is known 

(Robertson & Kopf, 1998). Also, the habitus and size of the clasts and their abundance relative to the 

matrix do not only define the texture of the individual layers of mud breccia, but also serve to 

reconstruct the evolution in time (Kopf & Flecker, 1996). 

 

Fluid phase 

Geoichemical signatures of the fluid phase help to assess their source depth, the physical, 

metamorphic, or diagenetic processes that generated the fluids, what  processes occur in the pathways 

of the fluids, and the rate of transport of the fluids. In order to achieve this in the MEMO project, we 

will specifically be looking at: 

Chloride: Reduced Cl can be indicative of an input of pure water from dehydration of hydrous 

minerals (e.g., smectite, opal, serpentine) or from dissociation of gas hydrate. When combined with 

other tracers (below) the responsible processes can be constrained. 

Na, K, Mg, and Ca: Common silicate diagenetic reactions are responsible for characteristic 

increases/decreases in the concentrations of these elements. 

Ca, Mg, Sr: Common carbonate diagenetic reactions are responsible for characteristic 

increases/decreases in the concentrations of these elements (calcite, dolomite, siderite 

precipitation/dissolution or reprecipitation). 

B, Li: Typically taken up during low temperature clay formation from ash and typically released 

during the smectite-illite reaction. As sediments reach higher temperatures (200-300°C), Li 

concentrations in pore fluids increase exponentially while B increases rougly linearly. B is also taken 

up during low temperature serpentinisation of oceanic lithosphere, particularly at faults and fractures, 

and is released during alteration from low T to high T serpentine phases. 

Na, K, Ca, Mg, and Li are used variously in geothermometry to determine the temperature of the 

source region and, through the extrapolated regional temperature gradient, the source depth (see  

[Verma et al., 2008] for a thorough review). 

δ18OH2O and δDH2O: δD is the primary tracer for differentiating between dehydration reactions 

and hydrate dissociation. The former leads to low δD and the latter leads to high δD while both 

increase δ18O. A number of other processes affect these isotopes in a predictable manner (see 

[Dählmann et al., 2003], for a good review).   

B isotopes are considered powerful tracers in subduction zones and characteristic patterns are 

known for specific mineralogies, environments, and temperatures (see review by [Deyhle et al., 2005] 

and also Fig. 4). 
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Hydrocarbons: The makeup of hydrocarbon gases and their carbon isotopes primarily differentiate 

between shallow-sourced microbial methane and deep-sourced thermogenic gases and are thus a 

strong indicator of fluid source depth/temperature. 

DIC: Carbon can be derived from a number of potential sources from shallow marine organic 

matter down to the mantle. Its isotopic composition can potentially be used to distinguish between 

these possibilities, particularly when combined with other tracers. Typically, isotopically-depleted 

methane and 13C-enriched DIC produced by deep methanogenesis are carried from depth to the 

surface by upward flow of fluids derived from sediments of the subducting slab. If this transport is 

slow, most of the ascending dissolved methane will be oxidized via sulfate reduction, generating DIC 

with low δ13C∑CO2 values. However if fluids are passing rapidly (and recently) from depth, there will 

be a large contribution of DIC originating from deep methanogenesis with high δ13CDIC values. 

The application of the above to the data set resulting from the MEMO project will lead to 

determining the processes involved in the fluid’s genesis. For example, the effects of gas hydrate 

dissociation will likely be seen in the fluids in the form of low chlorinity. Since this is a simple 

addition of pure water and the O and H isotopic relationship is well known, this process can be easily 

distinguished from others. If we only see the results of low-T silicate diagenesis (high Cl, Ca, low B, 

K, Li, Mg, positive δD, negative δ18O) then the source is likely compaction-driven high pore 

pressures at or just below the base of the basin. Low chlorinities along with high B and Li, low δD, 

and high δ18O suggests advancing smectite dehydration, the transition to illite, source depths of 2 km 

or more, and temperatures of 80-130°C. If illitisation is indicated, then the relationship between B 

isotope fractionation and temperature (Deyhle et al., 2005) can be further used to constrain the depth 

of the mud volcano’s roots. A very low B/Li ratio can be indicative of higher temperatures (>200°C) 

and this ratio may be useful in bracketing source temperature based on experimental results (You et 

al., 2001). As sources become deeper and multiple sources and processes have various effects on the 

ultimate fluid chemistry, the determination of the fluid genesis and history becomes increasingly 

complicated. Often responsible processes can only be bracketed or eliminated and thus, some 

constraints put on them. Also the results of initial analyses may suggest further procedures that may 

be utilised to achieve the projects goals.  

 

Headspace gas in gravity cores as well as gas analysis from dissociated gas hydrate recovered shed 

additional light on the depth of fluid origin. Analysis in the MEMO project will include 

measurements of the C1/C2+ ratio as well as δ13C to determine the signifucance of a thermogenic 

component as well as δ18O of the gas hydrate water (in comparison to that of the regular interstitial 

waters). See also detailed descriptions in the “Methods” section (Ch. 5) below. 
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4. Narrative of the cruise 
  (A. Kopf) 

 

Cruise SO222 had to be split into two legs given the fact that RV Sonne is too small to host the MeBo 

seafloor drill rig and the ROV Quest at the same time. 

Leg SO222A started on 09 June 2012 in Hong Kong. After a 5-day transit towards Japan, the vessel 

arrived in the Kumano Basin working area late on 14 June. Station work started with CTD, a roll & 

pitch calibration, Parasound profiling and Posidonia transducer calibration. Gravity coring as well as 

heat flow and CPT measurements were taken up on 15 June, and the MeBo seafloor drill was 

deployed on 16 June for the first time. Work continued until the late night of 18 June, when RV 

Sonne had to head northwards to escape typhoon GUCHOL. After almost 48 hrs somewhere close to 

Japan, we headed south again and commenced gravity coring, Parasound and heat flow work on 21 

June. During the night to 22 June, typhoon TAMIL passed the research area and R/V Sonne went 

southwards to wait on weather. Station work continued in the afternoon of 23 June and three more 

MeBo deployments were performed in addition to the smaller seagoing devices. Late on 29 June, R/V 

Sonne headed northwards for the Nagoya mid-cruise port call. 

During the 4-day port call in Nagoya, Japan, MeBo had to get demobilised first. During the first two 

days, this included heaving of all components to the pier as well as detaching all welded support 

structures of the LARS (MeBo Launch and recovery system) from the aft deck. On day 3 and 4, the 

ROV Quest was mobilised and other components were received. Over the course of the port call, part 

of the scientific crew was exchanged (see “List of participants” above). On 03 July, a scientific 

meeting of observatory specialists from Japan, the USA and Germany was held in R/V Sonne’s 

conference room in order to review the acievements during Leg SO222A, plan measures during Leg 

SO222B, and prepare for a scientific workshop in Houston, USA, in September 2012 as well as a 

Japanese cruise in the Kumano Basin in Jan/Feb 2013, where more observatory work is envisaged. 

On 04 July, 9.00, R/V Sonne headed back out towards the Kumano Basin for Leg SO222B research 

tasks. Station work continued later the same day after a 10 hr-transit back to the mud volcano field. 

Apart from gravity coring, Parasound, CPT and heat flow deployments, ROV Quest was used twice 

(05 July and 06 July) to survey and sample mud volcanoes, carry out in situ T-measurements, and 

deploy observatory components. Problems with the vehicle enforced alternate station work including 

flowmeter deployments for the remainder of the cruise. This included gravity coring, TV grab and 

heat flow surveys, and multibeam mapping. On 16 July, 7.00 station work was ended and R/V Sonne 

started the transit to Busan, Korea. There, the cruise ended on July 18 in the late afternoon with all 

scientists evacuating the ship since a typhoon escape was ordered by the port authority for that night. 
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5. Methods 

 
5.1. CTD, Seafloor and Parasound surveys 

(P. Wintersteller, T. Fleischmann, G. Bohrmann) 
 
 
CTD (Conductivity – Temperature – Depth) 
 

To obtain information about the distribution of the water masses along the Iberian coast a CTDOS 

(Conductivity, Temperature, Depth, Oxygen, Salinity) profiler combined with a rosette water sampler 

(24 Niskin bottles, 1 l volume, HydroBios; see Fig. 10) was used at two different sites during SO222. 

The CTD data were primarily needed for the conversion of the recorded SIMRAD EM120 travel 

times into depth values. 

 
Figure 10: CTD on main deck of RV Sonne prior to deployment. 

 
KONGSBERG EM120 Multibeam system 

The hull-mounted KONGSBERG EM120 multibeam echosounder (MBES) allows accurate 

bathymetric mapping up to depths deeper than 11,000 m. The system is composed of two transducer 

arrays, sending successive frequencies coded acoustic signals of 11.25 to 12.6 kHz. Data acquisition is 
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based on successive emission-reception cycles of the signal. The emission beam is max 150° wide 

across track, and 2° along track direction. The reception is obtained from 191 overlapping beams, with 

widths of 2° across and 2° along track. Using the 2-way-travel-time and the beam angle known from 

each beam, and taking into account the ray bending due to refraction in the water column by sound 

speed variations, depth is estimated from each beam. A combination of phase (lateral beams) and 

amplitude (center beams) is used to provide a measurement accuracy practically independent of the 

beam pointing angle.  

During cruise SO222, MBES was used continuously in parallel with PARSOUND sub-bottom surveys. 

In total MBES/PS - surveys of about 1500km has been acquired during SO222 leg A and B. Tab. 1 

shows the settings used to acquire the data. 

 
 Table 1: Settings used during SO222 
 

Coverage angle 60°/60° 65°/65° for the last survey 
Beam spacing in between  
Pitch stabilization on  
Yaw stabilization rel. mean HDG medium 
SSV at Transducer from sensor  
Pinge Mode auto  

 
For reasonable hydro acoustic recording a proper sound velocity profile (SVP) is essential. Thus, two 

CTD’s were taken during the cruise. Two SVP’s were calculated based on the SEABIRD CTD 

measurements (see above and section 6.1). The graph shows a wide variability in sound velocity over 

the upper most 200m of the water column. The SVP’s have been applied to EM120 according to time 

noticed in the hydro acoustic protocol. There was no chance to get CTD data from the southern 

Kumano basin since the current was simply too strong (4-5kn) to deploy the equipment. 

During leg SO222a a patch-test has been performed. The results of this roll- and pitch-calibration 

showed no changes in the already given offsets of the system. 

 

 
ATLAS PARASOUND profiling 
 

The ATLAS Hydrographic PARASOUND sediment echosounder is also a hull-mounted system on 

R/V Sonne. It determines the water depth and detects variable secondary low frequencies from 1 up to 

5.8 kHz thereby providing high-resolution information of the sedimentary layers up to a depth of 200 

meters below sea floor. For the sub-bottom profiler task, the system uses the parametric effect, which 

produces additional frequencies through non-linear acoustic interaction of finite amplitude waves. If 

two sound waves of similar frequencies (18 kHz, 22 kHz) are emitted simultaneously, a signal of the 

resulting frequency (e.g. 4 kHz) is generated for sufficiently high primary amplitudes. The new 

component is travelling within the emission cone of the original high frequency waves, which are 
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limited to an angle of 4° for the equipment used. The resulting footprint size of 7% of the depth is 

much smaller than for conventional systems and both vertical and lateral resolutions are significantly 

improved. 

 

Primary high and secondary low frequencies are recorded as raw-format (*.asd) as well as ps3 and 

SeGY formats. The survey of both legs SO222a and SO222b is split into subfolders according to the 

frequencies (PHF, SLF). SeNT, a program made by Dr. Hanno Keil, Univ. of Bremen, has been used 

for post processing. All specifications and settings applied to the PARASOUND system during 

SO222 are listed in Table 2. The sound velocity profile measured by the CTD has been applied to the 

system for accurate raypathing. 

 
Table 2: PARASOUND settings during SO222b 

Hydromap Control Single Pulse Quasi-Equidistant Transmission 
Desired Time Intervall - 300ms 
Manual Pulselength  0.250ms 0.250ms 
Periods pro Pulse 1 PpP 1 PpP 
Max. Transmission Power 100% (160V) 100% (160V) 
Pulse Type continous wave continous wave 
Pulse Shape Rectangular Rectangular 
Desired PHF freq. 18.8 kHz 18.8 kHz 
Desired SLF 4 kHz 4 kHz 
   

Online Filtering Parastore SLF   
Low Pass Iteration 1 
 High Cut 2kHz 
(Auto-)Correlation  On 
   

Amplitude Scale   
Clip 50 - 500mV depends on sediments & wave angle 
Logarithmic Scale On  
Gain Bottom TVC 0.05-0.2 depends on Clip & it's dependencies 
 

Acquiring data in “Single Pulse” mode was mainly driven by investigations in the water column. The 

mode allows using the primary high frequency (PHF) to search for gas-flares in the water column. 

Unfortunately no degassing could be observed in the Kumano basin. 

The open-source software MB-System version 5.3.1 (Caress & Chayes, 1996) and GMT version 4.3.1 

(Wessel & Smith, 1995) were used for bathymetric data processing, editing and evaluation. ESRI 

ArcGIS version 10 is inserted to create maps and a sustainable spatial data management.  
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5.2. In situ temperature measurements 
(N. Kaul, B. Heesemann, T. Feseker, K. Asshoff) 

 
The ascent of warm fluids and mud at mud volcanoes and along faults creates temperature anomalies 

at the seabed. Detecting and quantifying these anomalies in turn provides information about the 

seepage rates and sediment mass movements. Furthermore, in situ sediment temperature 

measurements are cruicial for determining the extent of the gas hydrate stability zone in the sub-

seabed. During this cruise, we conducted heat flow measurements at both local and regional scales in 

order to assess the activity of faults and mud volcanoes in the Kumano basin and to map the regional 

background heat flux. 

 

In situ sediment temperature and thermal conductivity measurements were conducted using the 6 m-

long Bremen heat flow probe (Fig. 11). The probe has a Lister-type violin bow design. The sensor 

strings contain 21 thermistors spaced at an interval of 26 cm and a heater wire along the entire length 

of the string. The electronics are integrated into the head of the probe. Four 8-channels 22-bit A/D 

converters are used to record temperature readings at a sampling interval of 1 s. The probe can be 

operated in an autonomous mode or with real-time data transmission when using the ship's coax wire 

(Fig. 12).  

 

 
 

Figure 11: The 6 m-long Bremen heat flow probe on the working deck of R/V Sonne. 
 
During this cruise, measurements were conducted with real-time data transmission in so called ‘pogo-

style’, performing several penetrations in a row at small distances. Each penetration consisted of 

raising the probe some hundred meters above the sea floor from the previous penetration, slowly 

moving the ship to the next penetration site and letting the wire angle become nearly vertical before 

dropping the probe into the sediment for the next penetration. Once the probe had penetrated the 
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seafloor, it was left undisturbed for 8 minutes for the sediment temperature measurement and another 

8 minutes, in case a thermal conductivity measurement was conducted. For the spacing of stations 

used in this survey, the transit between measurements took between 30 and 75 minutes. Transit speed 

was governed by the trade-off between keeping the wire angle small and minimizing the time between 

measurements. 

 

 
 

Figure 12: Schematic view of heat flow probe operation with real-time data transmission 
 
Winch speed during payout and retrieval of wire was 1 m/s. Deployment of the instrument was from 

amid ship on the starboard side, employing a beam crane and assistance crane. This procedure 

ensured safe operation even during medium sea state and minimum interference due to the ships 

vertical movement during station work.  

 

For precise positioning of the probe at the seafloor, an IXSEA transponder was mounted on the wire 

100 m above the instrument. The IXSEA Oceanos Abyss positioning system was used to track the 

probe at depth. At mud volcanoes, individual heat flow measurements were condcuted at a spacing of 

between 100 and 200 m, while a spacing of around 1000 m was used for regional surveys. 



  34 

Full processing of the measurements included the calibration of thermistor sensors, calculation of 

sediment temperatures and temperature gradients, correction for probe tilt during penetration, and 

calculation of thermal conductivities. Prior to each series of measurements, the probe was stopped at 

100 to 200 m above the seabed for three to five minutes to inter-calibrate the temperature sensors. The 

software MHFRED (based on Villinger & Davis, 1987) was used to extrapolate the equilibrium 

sediment temperatures from the recorded time series at each station and to determine the thermal 

conductivity of the seabed at selected stations. 

 

 

5.3. In situ CPT testing 
(M. Lange, A. Steiner, A. Kopf) 

 
On R/V Sonne cruise SO222, we used the MARUM free-fall CPTu probe for deep water. Cone 

Penetration Testing (CPT) is an effective method for in situ measurements of these geotechnical 

parameters with one instrument (Lunne et al., 1997), namely sedimentary strength (tip resistance, 

sleeve friction), pore pressure, tilt and acceleration. For these measurements, the CPT system relies on 

15 cm2 cone and pore pressure (u1, u2 and u3 positions depending on instrument and configuration; 

see below) and a pressure housing containing a all other sensors and the microprocessor at the top. In 

addition, deceleration and tilt are monitored for vertical profiling of the penetrated sediment column. 

 

The free-fall CPT (FF-CPT) instrument for deep (up to 4000 m water depth) marine use consists of a 

15 cm2 piezocone and a water-proof housing containing a microprocessor, volatile memory, battery, 

and accelerometer (see Fig. 13a; and Stegmann and Kopf, 2007 for details). Two pore pressure port 

(u1 and u3) are equipped with differential pressure transducers. The stainless steel pressure-tight 

housing containing a microprocessor, standard secure digital memory card (SD), tiltmeter, 

accelerometer, power supply (battery packages), absolute and differential pore-water sensors as well 

as power and data interface module (PDIM). The tiltmeter (dual-axis tilt sensor) monitors the 

penetration angle at +/- 45° relative to vertical. Five different accelerometers with different ranges 

(+/- 1.7g, +/- 18g, +/- 35g, +/- 70g and +/- 120g) provide information about the descent 

de/acceleration behaviour of the DWFF-CPTU instrument upon penetration. These data allow the 

researcher to calculate penetration velocity and depth during multiple deployments by 1st and 2nd 

integration. 

The reference pore-water pressure port at the pressure-tight housing is equipped with an absolute 

40.0 MPa (400 bar) pressure sensors (WIKA ECO-1). The pore-water pressure ports at the tip (u1) 

and 0.75 m behind the tip (u3) are connected to the differential pore-water pressure transducers 

(VALIDYNE P55D) via stainless steel tubing. Pore-water pressure changes can be monitored over a 
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range of 85 kPa (12.5 PSI) to 100-140 kPa (15 - 20 PSI) with a resolution between 8 and 15 Pa (Fig. 

13b). The sensors are protected with valves if high excess pore-water pressures are met (e.g. owing to 

blocked hydraulic tubes). They are further used to bleed the tubing in case of gas is trapped inside, 

especially during the initial phase of deployment when the instrument is lowered through the water 

column. 

 

 
Figure 13: Deep-water FF-CPTu instrument (a). Panel (b) shows blow up of the frontal portion  

with the pore pressure ports. 
 

The DWFF-CPTu instrument is used in an autonomous mode, at which all sensor and transducer 

information will be stored on a standard secure digital memory card (SD) with a very high sampling 

frequency (1 kHz). In addition, a data transmission telemetry system (Seabird Electronics SBE36 

CTD) is used to monitor all sensor and transducer parameter on board the research vessel in real-time 

(lower sampling frequency 1 Hz). The telemetry system consists of a deck unit (SBE36 CTD) and a 

PDIM. A schematically sketch of the telemetry system is shown in Figure 14. It provides real-time 

data acquisition and control of the instrument (e.g. operation of the valves) via an attached personal 

computer (PC) using a self-developed LABVIEW control software. 
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Figure 14: Schematic of SBE36 CTD and PDIM telemetry system. 
 
 

The frequency of data acquisition is variable and depends on the operation purpose of the DWFF-

CPTU instrument (e.g. sub-seafloor profiling or pore-water pressure dissipation).  Binary data are 

temporarily stored on a standard secure digital memory card (SD) and then downloaded via W-LAN 

to a PC. The two non-volatile battery packs available provide performance times of about eight to 

twelve hours, respectively. A self-developed deck interface box is used to download the recorded data 

and to charge the battery packs. 

The length of the DWFF-CPTU instrument is variable from 4.1 m to a maximum length of 6.8 m 

depending on what type of sediment is anticipated. The extension is accomplished by adding 1.4 m 

long metal rods and internal extension data/power cables as well as steel tubing within them. Hence, 

the weight of the DWFF-CPTU instrument ranges from approx. 500 kg to max. 550 kg. The DWFF-

CPTU instrument is deployed as individual measurement or pogo-style and remains in the sub-

seafloor for about 15 minutes. 

The DWFF-CPTU instrument was used with a self-developed piezocone probe/adapter (Fig. 13b) 

equipped with pore-water pressure ports at two locations (at the tip - Δu1 and 0.75 m behind the tip - 
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Δu3). During cruise SO222, the DWFF-CPTU instrument was generally deployed in 4.1 m long mode 

(CPTU probe/adapter + 1 rod + pressure-tight housing). 

A 1 kHz microprocessor data recording unit (AVISARO microcontroller) was utilised during 

deployments, focusing at the shape of the pore-water pressure dissipation curve (> 20 min deployment 

time according telemetry real-time data) and aiming at the sub-seafloor profiling of the sedimentary 

succession. The sub-seafloor profiling takes less than 7.0 sec and at the high sampling rate, provides 

the user with data of a vertical resolution < 5.0 x10-3 m thickness.  

The deployment mode aims (i) at a high-resolution vertical record (1 kHz logging frequency) of 

crucial in-situ sediment physical properties and (ii) at the recording of the excess pore-water pressure 

evolution once the DWFF-CPTU instrument is stuck in the sediment (dissipation test). Pore-water 

pressure dissipation is usually recorded for 20 to 30 min. The DWFF-CPTU instrument was veered at 

1.2 m/s winch speed to a level 30 – 50 m above the seafloor, then the winch speed was varied 

between 0.5 - 1.2 m/s until the DWFF-CPTU probe hits the seafloor and dynamically decelerated 

until its penetration depth of several meters sub-seafloor (a fix winch speed for each location). The 

instrument is recovered after the dissipation test. 

 

 

5.4. CAT-meters 
(M. Tryon) 
 

The Chemical and Aqueous Transport (CAT) meter (Fig. 15) (Tryon et al., 2001) is designed to 

quantify both inflow and outflow rates on the order of 0.05 cm/yr to 100 m/yr. At high outflow rates, 

a time series record of the outflow fluid chemistry may also be obtained. These instruments have been 

in use since 1998 and have been successful in monitoring long term fluid flow in both seep and non-

seep environments (e.g. Tryon et al., 2004, Tryon, 2010). The CAT meter uses the dilution of a 

chemical tracer to measure flow through the outlet tubing exiting the top of a collection chamber (Fig. 

16). The pump contains two osmotic membranes that separate the chambers containing pure water 

from the saline side that is held at saturation levels by an excess of NaCl. Due to the constant 

gradient, distilled water is drawn from the fresh water chamber through the osmotic membrane into 

the saline chamber at a rate that is constant for a given temperature. The saline output side of the 

pump system is rigged to inject the tracer while the distilled input side of the two pumps are 

connected to separate sample coils into which they draw fluid from either side of the tracer injection 

point (Fig. 16). Each sample coil is initially filled with deionized water. Having two sample coils 

allows both inflow and outflow to be measured. A unique pattern of chemical tracer distribution is 

recorded in the sample coils allowing a serial record of the flow rates to be determined. Upon 

recovery of the instruments the sample coils are subsampled at appropriate intervals and analyzed 
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using a Perkin-Elmer Optima 3000XL ICP-OES. Both tracer concentration and major ion 

concentration (Na, Ca, Mg, S, K, Sr, B, Li) are determined simultaneously. 

 

 
 

Figure 15: CAT meter 
 
As explained in Tryon et al. (2001), diffusion in the sample coils is negligible. Typical sample 

sizes are 25-75 cm of tubing, many times the characteristic diffusion length for typical seawater ions 

at ocean bottom temperatures. Our data has shown that we typically achieve resolutions of ~0.5% of 

the deployment time in the latest portions of the record and ~2% in the oldest portion for deployments 

of a year.  

 

 
Figure 16: CAT meter schematic (from Tryon et al., 2001). 

  
 
 

 



  39 

5.5. MeBo and Gravity coring / sediment description / IR imagery 
(M. Vahlenkamp, A. Hüpers, S. Hammerschmidt, M. Belke-Brea, J. Wei, A. Kopf, M. 
Bergenthal, R. Düßmann, K. Kaszemeik, S. Klar, C. Noorlander, U. Rosiak, U. Spiesecke, A. 
Stachowski, W. Schmidt, C. Seiter) 

 

Gravity corer 

In order to recover sediment cores, a gravity corer with tube length of 6 m and a weight of 

approximately 1.8 tons was used during cruise SO222 (Fig. 17). Before using the coring tool, the 

plastic liners were marked lengthwise with a straight line in order to retain the orientation of the core 

for potential paleomagnetic analyses and then placed inside the steel tube of the gravity corer.  

 
Figure 17: Gravity corer on board R/V Sonne. 

 

Once back on deck, the sediment cores were cut into sections of 1 m length, closed with caps on 

both ends and labelled according to a standard scheme (Fig. 18). By definition, the half core with the 

marked line was stored as archive half, while description, sampling, etc. were carried out on the 

remaining half. For the detailed procedures each working half core underwent, see below. 
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Figure 18: Scheme of the inscription of gravity core segments used during cruise SO222. 

 
MeBo 

During RV Sonne leg SO222a, the seafloor drilling rig MeBo (Fig. 19) was used for getting long 

sediment cores and to install borehole corks. MeBo is a robotic drill that is deployed on the sea bed 

and remotely controlled from the vessel. The complete MeBo-system, including drill, winch, launch 

and recovery system, control unit, as well as workshop and spare drill tools is shipped within six 20’ 

containers. A steel armoured umbilical with a diameter of 32 mm is used to lower the 10-tons heavy 

device to the sea bed where four legs are being armed out in order to increase the stability of the rig. 

Copper wires and fibre optic cables within the umbilical are used for energy supply from the vessel 

and for communication between the MeBo and the control unit on the deck of the vessel. The 

maximum deployment depth in the current configuration is ~2000 m. 

The mast with the feeding system forms the central part of the drill rig. The drill head provides the 

required torque and rotary speed for rock drilling and is mounted on a guide carriage that moves up 

and down the mast with a maximum push force of 4 tons. A water pump provides sea water for 

flushing the drill string for cooling of the drill bit and for removing the drill cuttings. Core barrels and 

rods are stored on two magazines on the drill rig. We used wire-line core barrels (HQ) and hard metal 

drill bit with 55 mm core diameter (push coring). The stroke length was 2.35 m each. With complete 

loading of the magazines a maximum coring depth of more than 70 m can be reached. Station time 

can reach more than 24 hrs per deployment.  
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Figure 19: MeBo drill rig during launch on the aft deck of RV Sonne. 

During this cruise the MeBo was deployed 6 times at 6 stations. The water depth was almost 2000 m 

and it was the first time for MeBo to drill in 2000 m waterdepth. During the whole cruise no 

malfunction of the drill rig occurred.   

The main objective of this cruise was to install borehole observatories with the MeBo. Therefore the 

outer drill string were sealed with different kinds of monitoring systems, so called MeBo Plugs (1&2) 

and MeBo CORKs type A and B (see section 6.8 below).  

 

Gamma Ray logging in MeBo holes 

A Spectrum Gamma Ray Memory Probe (SGR-Memory) consisting of a Spectral Gamma Ray Probe 

(Antares 1460) combined with a Memory Data Logger (Antares 3101) was used for bore hole logging 

at the MeBo drilling sites. The Spectrum Gamma Ray probe is equipped with a 30 cm long 

scintillation crystal combined with a photo-multiplier. Light impulses that are generated by gamma 

ray collisions with the scintillation crystal are counted and analysed concerning the energy spectrum. 

The three naturally occurring gamma ray emitter - potassium, uranium and thorium - generate 

different energy spectra. A GeoBase software package is used to calculate a best fit for the spectra. By 

combining the results of the Spectrum fit with the gammy ray counts the concentrations of K, U, and 

Th are calculated.  
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The SGR-Memory is an autonomous tool that is used with the MeBo drilling system. When the 

maximum coring depth is reached the inner core barrel is replaced by the probe. The gravity point of 

the sensor is located about 125 cm above the drill bit and measures through the drill pipe. The probe 

is hooked up the bore hole together with the drill pipe during recovery of the drill string (logging 

while tripping). Tripping speed was about 1m per minute. In the other cases the measurement was 

done by hooking up the tool inside the drill string with the MeBo wireline winch. 

 

Figure 20: Antares SGR probe prior to loading into the MeBo carousel on deck of RV Sonne. 

 

In situ T-measurements using MeBo 

During this cruise a prototype of different kinds of temperature logger probes were tested. Therefore a 

miniature temperature logger (MTL) build by 'Antares' was adapted to the tip of a pilot tube. The 

electronic and battery of the MTL is located in a 16mm diameter housing on top of a stainless steel 

tube (5mm in diameter and ~100mm long). The sensor element is located at the end of this tube. 

Figure 21 shows a pilot design containing the MTL for soft sediment (left), the MTL (middle) and a 

pilot for hard grounds where the MTL is sheltered in a steel cone (right). With the feeding system the 

tip was pushed approx. 20cm into the sediment. The starting points of each curve were aligned. In 

total, the T-probes were used in three of the six holes drilled with MeBo (Table 3). For results, see 

section 6.5 below. 
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Table 3: Station list for the MeBo in situ temperature measurements. 

Station 
GeoB No. 

Latitude 
[N] 

Longitude 
[E] 

Water 
depth [m] 

Remarks 

16709 33° 38’ 
01.6’’ 

136° 40’ 
15.4’’ 

1951 Cone: Hard ground; three 
temperature measurements in 
10m, 20m and 29m bsf.  

16728 33° 39' 32.5'' 136° 38' 00.9'' 2055 Cone: Soft sediment; temperature 
measurement in 10m bsf 

16732 33° 38' 13.3'' 136° 40' 30.0'' 2035 Cone: Soft sediment; three 
temperature measurements in 
10m, 19m and 29m bsf.  

 

 
Figure 21: In situ temperature probes used during cruise SO222. 

 

Infra-Red imagery of gas hydrate bearing cores 
 
The identification and documentation of gas hydrates in the sediment cores of the Sonne-222 cruise 

was an important task, which influenced the core handling as well as the sampling strategy of the 

sediment sequences. Gas hydrates are stable only at lower temperature and higher pressure than 

atmospheric conditions and are therefore dissociating during the recovery from the seafloor. 

Decomposition starts as soon as the hydrates moved out of their stability field. Based on the 

temperature and pressure conditions as well as the chemical compositions gas hydrates of structure I 

at the research area are stable below a water depth of ca. 500 m. Hydrate dissociation starts slowly in 

cores during wireline lifting above the stability phase boundary and is probably strongly increasing in 
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the upper water column where water temperature is around 24°C and on deck of the vessel where air 

temperature around 25°C occurs. Infrared thermal imaging of the surface of retrieved cores was 

shown to successfully identify thermal anomalies associated with gas hydrates. The novel method of 

hydrate identification was first used during ODP Leg 201 in sediments from the Peru margin (Ford et 

al. 2002). The technique was fully implemented during ODP Leg 204 on southern Hydrate Ridge at 

Cascadia margin (Tréhu et al. 2004). Although there are other processes related to negative 

temperature anomalies, distinct strong cold anomalies were shown to be directly associated spatially 

with gas hydrates due to their dissociation. The dissociation of hydrates is an endothermic process and 

the sediments containing hydrates are cooled relative to the surrounding deposits, thus creating 

negative temperature anomalies. 

 

Infrared imaging of cores was used on all the MeBo cores and most of the gravity cores. The major 

goal was to reach the following benefits during this cruise: 

• Rapid knowledge of gas hydrate presence in cores from the temperature anomalies of the core 

liner on surface for sampling hydrates and pore water above and below hydrate layers. 

• To assess and document the approximate distribution of hydrates. 

• To understand more about the texture of single hydrate specimen based on the size and shape 

of cold temperature anomalies and their delta-T values in order to use IR imaging as a proxy. 

Infrared radiation (ca. 0.750-350 um) is emitted by the objects as a function of their temperature. 

Therefore IR cameras which detect various wavelengths within their images can transfer the signals to 

a temperature pattern on the surface of the objects. We used during this cruise a ThermaCam SC 620 

camera (FLIR Systems) to map the thermal structure along the cores. The FLIR system allows using 3 

different temperature ranges from which we set to record from -40°C to + 120°C. The precision of the 

camera is 0.1°C at a temperature of 30°C and has an accuracy of +-2°C. The image presenter mode 

allows a full IR-image with selected color scale and reference image which is shown together with 

live IR image.  

For the flexible handling on board we decided to use a hand-hold camera, however, to have less 

influence from external IR radiation we used the same position for most of our IR imaging. Images 

for MeBo cores and gravity cores were acquired on the catwalk of R/V Sonne immediately after the 

cores were taken out of the drilling devices. Images were firstly stored in the SD card of the camera 

and then transferred to a laptop computer after the whole shooting procedure. Due to the limitation of 

the environment on board, one can only take a photo for about 60 cm of the core each time which 

means, for each MeBo core barrel (2.46 m), 5 to 6 photos were needed and 10 to 11 are needed for the 

gravity core (5.75m).  In order to have an overview of the temperature distribution, all the images 

have to be connected (see Results section 6.5).   
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Sediment description 

For sediment description a visual core description (VCD) form was completed for each section of the 

gravity and MeBo cores. The VCD summarizes in detail the stratigraphy by identifying variations in 

bedding, lithology, colour and sedimentary structures. The bed thickness is measured with a 

centimetre scale. We divided bed thickness into five groups: very thick beds (>100 cm), thick beds 

(30-100 cm), medium thick beds (10-30 cm), thin beds (3-10 cm) and very thin beds (1-3 cm). The 

contact between two beds is defined based on the transition (sharp, gradational) and the bedding plane 

(planar, wavy, erosional). Sediment colour of each bed was determined visually onboard using 

Munsell’s colour chart nomenclature giving the hue, value and chroma (e.g. Munsell Color Company, 

Inc., 1991). The colour was also studied routinely after the cruise with a Multi-Sensor Core Logger 

(MSCL; see Appendix 9.3). However, onboard colour should be preferred in further studies because 

storage may alter surfaces of splitted cores. A wide variety of sedimentary structures, bioturbation, 

soft-sediment deformation, and coring disturbance is indicated by patterns and symbols in the VCD. 

The full set of patterns and symbols used in the VCD forms is shown in Figure 22. Lithological 

classification was based on grain size and composition. In the presence of more than 60% of 

siliciclastic and volcaniclastic grains with a major of siliciclastic minerals and rock fragments the 

sediment is considered as siliciclastic. The latter was further divided into textural groups after the 

Udden-Wentwoth grain size scale (Wentworth, 1922). The sediment was named based on the relative 

abundance between different grain sizes, with the most dominant defining the principal classification 

(Shepherd, 1954). The suffix “-stone” was added to the principal names sand, silt, and clay when the 

sediment was consolidated, and the term “breccia” was applied in the present context as principal 

name for a sediment with (sub-)angular, poorly sorted rock fragments in a finer grained matrix and is 

produced by mud volcanoes.   

If the sediment was dominated by volcaniclastic components, it was subsequently described as 

volcaniclastic. We followed Mazzullo et al. (1988) who defined for VCD three textural groups of 

volcaniclastic sediments: a) volcanic breccia with pyroclasts greater 64 mm, b) volcanic lapilli with 

pyroclasts between 2 and 64 mm and c) volcanic ash with pyroclasts smaller 2 mm. To improve core 

description and further investigate representative lithologies and intervals of interest, onboard smear 

slides were prepared and analysed under the microscope with cross-polarized transmitted light. For 

smear slide preparation a small volume of sample material was mixed into distilled water directly on 

the petrographic slide. After the sample had dried under room-temperature conditions it was 

imbedded with Canada Balsam (refractive index =1.54) and covered with a thin glass. A smear slide 

form was completed that comprises the identification, size and estimation of clastic, authigenic / 

diagenetic and biogenic components (e.g. Rothwell, 1989). Clastic components were further classified 

according to their grain size, i.e. clay, silt and sand. 
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For graphical visualization of the VCD we used the computer program SEDLOG to produce a 

publication-quality, simplified, and annotated standard graphic report of the cores (Zervas et al. 

2009). SEDLOG displays lithologies and sedimentary structures of the core intervals recovered by 

graphic patterns in the graphic lithology column using the symbols illustrated in Figure 22. 
 

 

 

 
 

Figure 22: Key of symbols for barrel sheets of gravity core description. 
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5.6. Physical properties 
(M. Ikari, T. Ojima, M. Belke-Brea) 

 
During cruise SO222, shipboard physical properties measurements were restricted to falling 

cone penetration tests and vane shear tests on the working half of the core.  

 

5.6.1. Cone penetrometer 

 The geotechnical properties along the sediment cores were determined according to British 

Standards Institutions (BS1377, 1975). A Wykeham-Farrance cone penetrometer WF 21600 (Fig. 

23a) was used for a first-order estimate of the sediment's stiffness. For the measurement, the metal 

cone was brought to a point exactly on the split core face (Wood 1985). A manual displacement 

transducer was then used to measure the distance prior to and after release of the cone (i.e. penetration 

after free fall of the cone). Precision is 0.1 mm of displacement. The distances measured can then be 

translated into sediment strength (see Hansbo, 1957).  

 

Figure 23: (a) Falling cone penetrometer and (b) vane shear device used on the split core surface. 
 

A falling cone penetrometer with a defined weight (80.51 g) and geometry (30° cone) was used by 

Hansbo (1957) during a detailed study of the relationship between the cone penetration and soil 

strength. The undrained shear strength su can be calculated from the variables mass and tip angle of 

the falling cone, gravity g, penetration depth d and the cone factor k via the “cone factor”. Wood 

(1985) calculated from fall-cone and miniature vane tests average values of cone factors (in our case 
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k=0,85 for a 30° cone). The undrained shear strength can then be calculated using the equation su = 

(k*m*g)/d2.  

Shore-based laboratory testing will include ring shear experiments as well as dynamic triaxial 

shear tests to obtain residual strength and rate-dependent frictional properties as well as the 

liquefaction potential of the materials recovered. 

 

5.6.2 Vane shear testing 

In addition to the Cone Penetrometer a double vane shear apparatus by GSC ATLANTIC was used 

for more information about sediment stiffness and residual shear strength (Fig. 23b). The distance 

between the two vanes is 15 cm. For the measurements, four-bladed vanes (L = 12.5 mm, h = 6.25 

mm, d = 12.5 mm) were inserted into the split undisturbed core faces and rotated at a constant rate of 

90°/min. Data are logged via an interface module (GSC ATLANTIC) using the Testpoint software 

package. 

A spring transmits the rotation at the vane. The torque required shearing the sediment along the 

vertical and horizontal edges of the vane. The undrained shear strength, sU depends on the torque T, 

the vane constant K, the maximum torque angle at failure σ and the spring constant B that relates the 

deflection angle to the torque (Blum, 1997). The vane constant, K is a function of the vane size and 

geometry and was used during the measurements with K=π*d2*(h/2)+π*(d2/6) for full dipping vanes. 

The undrained shear strength can then be calculated using the equation sU= T/K. Shore-based 

laboratory testing will include ring shear tests to obtain residual strength and rate-dependent frictional 

properties of the materials recovered. 

 

 
5.7. Fluid geochemistry 

(T. Pape, P. Geprägs, M. Tryon, A. Bräunig, M. Madison) 
 

 

5.7.1. Gas chemistry 

During cruise SO222 gas sampling and analyses was performed in order to evaluate the methane 

distribution at selected deep-sea mud volcanoes in the Kumano basin and to determine the molecular 

composition of light hydrocarbons in gas hydrates and vent gas. Whereas special emphasis was laid 

on MeBo sediment cores during the first leg, works during the second leg concentrated on vent gas 

collected with the ROV ‘Quest 4000m’. During both legs the sample sets were amended by gravity 

cores. The objectives of the on-board works were in particular to 

 
• evaluate the source (microbial vs. thermogenic) of light hydrocarbons in the deeper subsurface 
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• characterise the distribution of light hydrocarbons in the sediments 

• evaluate the molecular differentiation of light hydrocarbons during hydrate precipitation 

• determine hydrate phase boundaries and hydrate dissociation temperatures considering current 

field data 

• collect gas samples for detailed investigations of the molecular and isotopic composition of light 

hydrocarbons in the home laboratory. 

 

Gas sampling techniques 

Gas from intact hydrate pieces 

Pieces of gas hydrates were extracted from gravity cores and MeBo cores. For onboard gas 

chemical analysis, the hydrate pieces were cleaned in ice-cooled water and placed in plastic syringes 

for immediate controlled dissociation at ambient temperature. The liberated gas was transferred with a 

canule into 20 ml glass serum vials prefilled with oversaturated NaCl solution and sealed with butyl 

stoppers (Fig. 24). A total of 113 subsamples of hydrate-bound gas were prepared from intact hydrate 

pieces during cruise So222 (Table 4A) for onboard determination of light hydrocarbon composition 

and for storage and onshore analysis. At the MARUM selected samples will be analyzed for improved 

molecular composition and for stable carbon and hydrogen isotopic composition of light 

hydrocarbons and carbon dioxide (see Whiticar, 1999). 

 

Figure 24: Gas hydrate samples from gravity cores were transferred into syringes for dissociation; free gas is ascending 
into vials for later laboratory analysis.. 
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Sedimentary gas from Gravity cores and MeBo cores 

For vertical profiling of methane concentrations using the headspace technique, sediment samples 

were taken from cores recovered with the gravity corer and the MeBo. 3 ml of sediment were taken 

using cut-off syringes and transferred into 20 ml glass vials prefilled with 5 ml of 1 M NaOH. For 

gravity cores, sediments were extracted from the top or the bottom of freshly cut core segments and in 

most cases through small windows cut into the PVC-liner at defined depths. For MeBo cores, 

sediments were taken from the top of the pilot chuck immediately after it’s dismantling from the core 

catcher part. 

The samples were shaken with an automatized lab bench shaker for 1 h and subsequently stored in 

the cooling room. All headspace samples will be analyzed for methane concentrations at the MARUM 

in Bremen. A total of 329 sediment samples were taken for headspace gas analysis during SO222 

cruise (Table 4B). 

 
 
Table 4: Number of samples taken for gas hydrate (part A, above) and headspace (Part B, below) gas analysis. 
 
Tool Number of cores Number of gas 

subsamples 
Gravity corer 10 113 

Total  113 
 
 
Tool Number of cores Number of samples 
Gravity corer 43 329 
MeBo 6 45 

Total  374 
 

 

Analytical techniques 

Onboard analysis of hydrocarbon compositions in vent gas and hydrate-bound gas 

Samples from vent gas and hydrate-bound gas were analysed onboard for concentrations of light 

hydrocarbons with a Trace GC Ultra (Thermo Scientific) gas chromatograph. Light hydrocarbons (C1 

to C6) were separated, detected, and quantified with a capillary column (CP-PoraBond Q, 25m, 

0.32mm, 5µm, Varian Inc.; He as carrier) connected to a Flame Ionization Detector. Calibrations and 

performance checks of the analytical system were conducted regularly using commercial pure 

methane standards and light hydrocarbon mixtures. The coefficient of variation determined for the 

analytical procedure was less than 2%. 
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Onshore analysis of stable C and H isotopic composition of light hydrocarbons 

For onshore analysis of stable isotope ratios (2H/1H, 13C/12C) of light hydrocarbons and carbon 

dioxide using the GC-Isotope-Ratio-Mass-Spectrometry system at the MARUM, gas samples were 

stored in glass vials sealed with NaCl-saturated water or 1 M NaOH as described above. 

 

Hydrate phase boundaries 

Gas hydrate phase boundaries were calculated using the HWHYD U.K. software (Masoudi and 

Tohidi, 2005) loaded with molecular compositions of hydrate-bound volatiles and salinities of 

interstitial waters.  

 

 

5.7.2. Pore water chemistry 

The composition of pore water in marine sediments is one of the most suitable indicators to 

characterize the benthic system. Thus, vertical, horizontal and temporal changes in concentrations of 

dissolved constituents can be used for identification and quantification of specific transfer processes, 

regardless of whether these are mircobially mediated or caused by abiotic reactions. Furthermore, 

pore water signatures and profiles can reveal the importance fluid transport mechanisms. In the 

majority of deep sea-sediments molecular diffusion is by far the dominate process, which controls the 

transport of dissolved components. When advection becomes important at a specific location (e.g. 

seep sites), the modeling of pore water profiles allows the calculation of the corresponding flow rates. 

Last but not least, pore water compositions can also indicate to the history of the waters of even to 

their primary source. 

During this cruise, pore water geochemistry sampling was conducted mainly to find indications for 

the upward transport of fluids from deeply buried formations, caused by the deformation and 

subduction of the African plate moving northward below the European plate. In this context salinity, 

mainly expressed by the concentrations of chloride, sodium, sulfate, magnesium, calcium and 

potassium, is of particular interest. Inorganic geochemical work, however, was restricted to the 

extraction of pore water using rhizon samplers (~0.4 µm; Seeberg-Elverfeldt et al., 2005) on the split 

core (Fig. 25). The vacuum necessary to operate the rhizon samplers was created by pulling up 10 ml 

plastic syringes. The amounts of pore water retrieved by this method were between 5 and 10 ml. In 

general, the depth resolution varies approximately between 20 and 30 cm. 

 



  52 

 

Figure 25: Rhizon pore water extraction in split working half of the gravity core. 

 
 
 
 
5.8. ROV operations 
(Christian Seiter, Phillip Franke, Olliver Herschelmann, Hoang Anh Mai, Ralf Rehage, Michael 
Reuter, Christian Reuter, Marcel Zarrouk) 
 
The deepwater ROV (remotely operated vehicle) “QUEST 4000m” used during SO222B aboard RV 

Sonne, is installed and operated at MARUM, University of Bremen, Germany. “QUEST 4000m” is 

based on a commercially available 4000 m rated deepwater robotic vehicle designed and built by 

Schilling Robotics, Davis, USA (Fig. 26). Since installation at Marum in May 2003, it was designed 

as a truly mobile system specially adapted to the requirements of scientific work aboard marine 

research vessels for worldwide operation. Today, “QUEST 4000m” has a total record of 321 dives 

during 28 expeditions, including cruise SO222. 

 

“QUEST 4000m” System description 

The total “QUEST 4000m” system weighs about 45 tons including the vehicle, control van, workshop 

van, electric winch, 5000-m umbilical, and transportation vans and can be transported in four standard 

ISO 20-foot vans. A MacArtney Cormac electric driven storage winch is used to manage up to 5000m 

of 17.6 mm NSW umbilical cable. 
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Figure 26: ROV Quest on the pier of Nagoya port before loading for leg SO222B. 

 

“QUEST 4000m” internal equipment and online tooling 

The space inside the “QUEST 4000m” toolskid frame allows installation of mission-specific marine 

science tools and sensors. The initial vehicle setup includes two manipulators (7-function and 5-

function), 7 color video cameras, a digital still camera (Insite SCORPIO, 3.3 Mega-Pixel), a light 

suite (with various high-intensity discharge lights, HMI lights, lasers, and low-power dimmable 

incandescent lights), a Sea&Sun online CTD, a tool skid with draw-boxes, and an acoustic beacon 

finder. Total lighting power is almost 3 kW, total additional auxiliary power capacity is 8 kW. In 

addition, the permanently installed Kongsberg 675kHz Type 1071 forward looking Scanning Sonar 

head provided acoustic information of bottom morphology and can be also used for detection of gas 

emissions.  

 

Video Setup, HDTV and vertical imaging 

Continuous PAL video footage was continuously hard disc recorded with two color-zoom cameras 

(InsitePacific PEGASUS dome port and PEGASUS planar port). In order to gain a fast overview of 

the dive without the need of watching hours of video, video is frame-grabbed and digitized at 5sec 

intervals, covering both PAL and HD video material.  

For extremely detailed video close up filming, a near-bottom mounted broadcast quality (>1000 TVL) 

3CCD HDTV 14 x Zoom video camera was used (InsitePacific Zeus). Spatial Resolution of this 



  54 

camera is 2.2 Mega-Pixel at 59.94 Hz interlaced. Recording was performed on demand onto tapes in 

broadcast-standard digital Sony HDCAM format, using uncompressed 1.5 Gbit HD-SDI transmission 

over a dedicated fibre-optic connection. Image display takes place on two 26” HD TFT display 

screens inside the control van, one each for pilots and scientists, providing excellent close-up view 

and covering the full dynamic range of the camera. Distribution of the cameras HDTV video signal 

was performed through dedicated cabling into the science lab, allowing real-time display on a 26” HD 

TFT screen at full resolution.  

As a standard still image camera, an Insite Scorpio Digital Still camera was used, providing 3.3. 

Mega-Pixel spatial image resolution and highly corrected underwater optics.  

For the task of video mosaicking and vertical downward viewing, a broadcast quality downward 

looking camera with dedicated corrected underwater optics (InsitePacific ATLAS) was installed on 

the toolskid in conjunction with one high power HID wide angle flood light. Orientation of light and 

camera was adjusted in order to gain a large angle between optical axes. Thus, reduced backscatter 

allowed clear imagery from up to 7 meters above seafloor. In addition to downward looking ATLAS, 

a digital still camera with 14 Mpix resolution was installed. 

Video distribution was provided by dedicated CAT-5 based VGA transmission hardware, als well as 

by streaming the main tiled video image over the vessel’s network. 

 

During SO222B, the following scientific equipment was handled with “QUEST 4000m”: 

ROV based tools, installed on vehicle: 

- ROV interchangeable draw-box for technical tools and devices and scientific samples 

- Sea and Sun CTD real-time probe with turbidity sensor 

- nets for clusts sampling 

- acoustic beacon markers 

- simple knife for rope operation 

In addition the following scientific sensors and devices were deployed, handled and/or recovered at 

depth during SO222: 

- MeBoCORK B bottom unit 

- sediment push cores (Fig. 27A) 

- autonomous temperature loggers on frame (so-called MTL stick) 

- T-lance (Fig. 27B). 
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Figure 27: (A) Sediment push coring devices in ROV Quest drawer; (B) T probe for in situ measurement using the 
manipulator arm of ROV Quest. 

 
 
5.9. Observatories 

(A. Kopf, S. Hammerschmidt, K. Kitada, T. Kimura, T. Fleischmann) 
 
MeBo CORKs 

The general principle of a CORK (see above) has to be minimised in case of MeBo where 

conical threads and a diameter of only 98-110 mm have to be sealed. Space is hence most seriously 

governing the design of the CORK, which has to seal the inner borehole from the overlying ocean 

body, and which also has to host the connection of the borehole tubings to the actual observatory unit. 

Also, this “adapter” has to be most versatile given that shiptime is precious and that cruises with 

large-scale devices such as MeBo and ROV are costly. The “MeBoCORK concept” thus aims at a 

smart approach where an observatory can either be set by MeBo alone, or in combination of MeBo 

and ROV. The first represents a compromise scientifically since very few parameters will be 

monitored (P and T) over a limited time span, whereas the second has an increased payload and 

encompasses geochemical sampling as well. However, both approaches appear extremely valuable at 

this stage and the future will likely provide opportunities for payload being added onto either 

observatory unit. 

The two versions of the MeBo CORK, as sketched in Figure 6B and as detailed in the Appendix 

(see quotation by develogic, where both versions are drawn in detail [Figs. 1 and 2]), are both self-

contained with power, data logging, data transmission and transducers. They are recoverable at all 

times and hence minimize the risk of loosing the investment. In the following paragraphs, the 

deployment mechanism is explained in some detail. First, the MeBo hole has to be prepared for long-

term instrumentation after coring is completed. This is achieved by leaving several pieces of MeBo 
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outer drilling rods in the ground after wireline core retrieval. These rods, appx. 30-40 m in total 

length, act as a casing and stabilize the upper subseafloor portion where the deposits are poorly 

consolidated and otherwise may close in. Only the lowermost part of the hole is free of “casing” and 

provides direct access to the formation. The first prerequisite to keep the MeBo CORK simple follows 

the first hydrological observatory in ODP: only hydraulic tubing is lowered into the hole to access 

fluid pressure (or fluids) at depth [Wheat et al., 2011], and all electronics remain at the wellhead. For 

MeBo, a string of 2 armored PTFE tubes is coiled up in the lower part of the MeBo-set observatory 

unit (termed MeBoCORK A, where A stands for “autonomous”, i.e. MeBo by itself is capable of 

placing a stand-alone observatory), namely in the lower portion of the “adapter” hosting the 

receptacle for the hotstab. Once the drilling device has set this piece, the coil of tubing is unlocked 

and a dead weight favours the tubing’s descent towards terminal depth where the hole is open. The 

upper end of the individual tubings connects to borings of the hotstab receptacle. The lower unit also 

hosts battery packs. 

The upper portion of the MeBoCORK A hosts the data transmission unit, data logger and 

transducers, the latter of which are connected to the borings of the male hotstab end (Fig. 28). The 

hotstab is mated with its female counterpart, and the two halves of CORK A are further secured by a 

bayonet connector that allows coupling of the MeBo top drive and hence torque being transmitted (in 

clockwise direction only!). During installation MeBo fully srews in the entire CORK instrument, 

which in total is the exact length of a regular MeBo drill rod and which sits on the magazine with the 

other rods. Once this piece is properly set, MeBo pushes the unit to a depth so that only the titanium 

part (ca 70 cm long) sticks out of the seafloor and then takes off. In the initial design, this simple, 

MeBo-set CORK monitors pressure and temperature, which are both indicators for deep-seated fluid 

flow; pore pressure is additionally valuable as strain proxy (see above). Depending on the sampling 

rate, the batteries will allow monitoring for many months to a few years (in case of the system 

deployed during leg SO222A = 7 months). 

 
Figure 28: MeBoCORK A (=autonomous) as well as MeBoPlug for comparison. See text. 
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If monitoring or parameters other than pressure and temperature is desired, the instrumented MeBo 

rod (CORK A) is too small and an ROV dive is required to recover the CORK A and deploy an 

external, more sophisticated observatory unit (Fig. 29). Since the ROV dives to the seafloor and 

connects a seafloor (0sea bottom) unit to the MeBo rod with Hotstab recepticle, this system was 

termed MeBoCORK B (=bottom). The ROV is able to unlatch the bayonet connector in counter-

clockwise direction and can transport the MeBo-set CORK back to the ship, because its weight is low 

and the diameter is suitable for the manipulator claw. Before this, a seafloor unit will be placed next 

to the MeBo drillsite (Fig. 29; see also section 6.8 below). This system contains of a pressure housing 

with an attached hood in which a male hotstab adapter plus the umbilical of armored tubing strings is 

coiled up. The ROV takes the hotstab and places it into the lower portion of the MeBo-CORK, which 

is remaining connected to the outer drillstring at all times. This operation is straightforward and has 

been done in a similar way when pressure units from ODP or IODP CORKs got replaced. The 

pressure housing at the seafloor can be equipped to the mission’s/scientists’ specifications, and in the 

case of this proposal will host the P and T transducers (same as in the instrumented rod) plus an 

osmo-sampler (Fig. 30; see also Jannasch et al., 2003). 
 

 
Figure 29: MeBoCORK B (=bottom) unit containing a pressure housing, acosutic modem, attached osmo-sampler, and 
the hot stab connector to couple to the drill pipe. Left photo shows overall unit, right photo contains detail with layout of 

tubings. See text. 
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Both MeBoCORK instruments are programmed to measure the pressure for a period of 30 s and then 

record the average P value. Seafloor reference and borehole P are offset by 15 s, so that the data are 

written to the disk alternately. 

 
 

Figure 30: Osmo-sampler (tubing coil [top] and pumps [below]) that are hosted in a PVC tube 
attached to MeBoCORK B. 

 
 
One MeBoCORK A and one MeBoCORK B were deployed during cruise SO222 in addition to 

simpler, already proven technologies such as the electronics from the MeBoPlugs or the SmartPlug 

borehole sensors. These latter systems are described below. 
 
MeBo Plugs (and MTL-sticks) 

In addition to the MeBoCORKs, which were co-developed with develogic (Hamburg), we used 

standard RBR data loggers with Keller differenmtial pressure transucers for monitoring strain in the 

boreholes. For this, plugs from POM were manufactured to seal the conical threads of the uppermost 

MeBo drill pipes (Fig. 31). At the top, a handle designed to specification of the ROV Quest 

manipulator were added. In the borehole-facing section, a thermistor as well as the downward-looking 

P port are situated (Fig. 31, inset). Given that only one thermistor was fitted into the so-called 

MeBoPlugs (named in analogy to the so-salled SmartPlug terminology in IODP), we are lacking a 

temperature record from the seafloor (i.e. upward-looking. In order to overcome this shortcoming, a 

simple self-contained device for seabottom T monitoring was designed and deployed by ROV (see 

next section). The sampling rate of the MeBoPlugs was set to 10 s on the RBR data loggers, which is 

providing them with an estimated lifespan of a few years (anticipated end of recording is Feb. 2016).  
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Figure 31: MeBoPlug prior to being screwed into a MeBo drill pipe (left); right photograph shows bottom view  

into the borehole with ports for P [hole at left] and T [little pin at right] monitoring. See text. 
 
Two MTL sticks, named after the Antares mini-temperature logger (MTL) being their key 

component, were fabricated to be placed next to the MeBo sites containing MeBoPlugs. This was 

realised during leg SO222B with ROV Quest.  

The MTL stick is only 70 cm long and comprises a stainless steel rod that has a fin in the lower 

portion (stuck into the sediment to prevent toppling over, even in strong currents), and a second fin 

with a pipe welded to it in its upper portion (Fig. 32). In the pipe, an MTL can be placed securely. At 

the top of the MTL stick, a small handle to ROV Quest’s specifications was mounted. The systems 

were programmed at a rate of 1 Hz and will monitor transient changes for 2.5 – 3 years. 

 

 
 

Figure 32: MTL stick to be deployed by ROV; those systems complement the MeBoPlugs at two sites to get high-
resolution seafloor temperature variations as reference for the MeBoPlug data. ROV handle is seen left, MTL is hosted in 

a metal tube; lower portion is stuck into the sediment (with metal shield for stabilisation in case of bottom currents). 
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SmartPlug piezometer 
The SmartPlug borehole observatory belongs, together with the MeBo-CORKs, to a series of recently 

developed Mini-CORK systems. In contrary to the original borehole observatories (Becker and Davis, 

2005; Wheat et al. 2010), Mini-CORKs are relative simple, self-containing instruments which can be 

easily deployed from any ship of opportunity. The SmartPlug instrument package includes a data 

logger/pressure period counter, a temperature sensor inside the data logger housing, a battery package, 

and two pressure transducers which are connected to pressure gauges via hydraulic tubing. One 

pressure gauge is “upward looking”, the other is “downward looking”, monitoring the hydrostatic 

reference (i.e. seafloor) and formation fluid pressure and temperature, respectively.  The formation 

pressure gauge is isolated from the overlying water column by the bottom seal located at the lower 

part of the SmartPlug structural outer shell (the “bullnose”) and usually by a mechanically released 

packer, to which the SmartPlug is attached before being installed in a borehole (for a more 

comprehensive outline of the technical details, please see Kopf et al., 2011a, b). Originally, the 

instrument was designed to be deployed in standard-sized boreholes drilled by ships operated by the 

Integrated Ocean Drilling Program (IODP), namely D/V Joides Resolution and D/V Chikyu.  The 

SmartPlug got already installed during IODP Exp. 319 within the Nankai Trough accretionary prism, 

where the borehole penetrated one of the shallow branches of the Megasplay fault (Site C0010, see 

Saffer et al., 2010). After 15 months, the instrument got recovered and proved to be reliable in 

constant monitoring of distinct changes in pressure and temperature (Kopf et al., 2011a, b; 

Hammerschmidt et al., submitted). 

 

Here, however, due to the unavailability of a drill ship, the SmartPlug was modified to be installed 

without the need for a drill string, a packer, or even a borehole. The bullnose was extended by a c. 1m 

long steel pipe, which serves not only as stabiliser once the SmartPlug is pushed into the seafloor but 

also acts as casing protecting the lower pressure gauge inlet and simulating a borehole-like 

environment (see Fig. 33). In addition to that, slots were cut into the steel pipe to allow water and 

sediment to escape during the installation. This is important to allow displacement of water during 

impact on the seafloor, to prevent overpressurisation within the steel pipe during penetration, and to 

allow re-equilibration of fluid pressure and temperature with the surrounding formation. The 

observatory was set to monitor with a sampling frequency of 10 s, which constrains the monitoring 

period to around 2.5 years (i.e. similar to those of the MeBoPlugs). For deployment procedure, see 

section 6.9 below. 
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Figure 33: SmartPlug converted into a piezometer before being mounted to the TV-grab for deployment.  

 
 
5.10. TV grab and USBL Posidonia 
 (T. Pape, A. Hüpers, J. Wei, G. Bohrmann, P. Wintersteller, P. Geprägs, M. Belke-Brea) 
 
TV grab 
The TV-guided grab sampler (Fig. 34) is a tool located permanently onboard R/V Sonne. Providing 

either colour or black and white video signals from the seafloor, it allows to select a well-defined 

position for its deployment. The video signal is transmitted via a LWL cable and is displayed online 

onboard the ship. The grab function is also controlled through a deck unit located in the laboratory, 

but the power for the hydraulics and the underwater lights is provided by two deep sea batteries, 

which limits the operation time of the TV-grab. The digital videos are available as well as the USBL 

position by POSIDONIA. 

When the desired sampling spot has been found with the video system, the tool can be deployed on 

the seafloor by the winch and the ‘close’ button has to be pressed. Depending on the material 

sampled, the maximum volume to be recovered is approximately 0.8 m3. 
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Figure 34: TV grab on board R/V Sonne. 

 

USBL Posidonia 

IXSEA’s POSIDONIA 6000 is an ultra-short baseline underwater navigation (USBL) that is used 

during ROV dives and for one of the box corer stations. The moon-pool mounted antennas require a 

calibration and a proper sound velocity profile. Most recent calibration for the system was done 

during SO222a by the Scientific Technical Service from RV Sonne. POSIDONIA 6000 receives 

motion sensor data from Simrad MRU5, located in the ideal ships center. SVP has been updated 

according to the measurement of CTD-1. Specifications and offsets of POSIDONIA 6000 were 

measured and corrected for whenever the device was used (e.g. when placing observatories and CAT 

meters, run the CPTu lance or TV grab, drill with MeBo, etc.). Although well calibrated, the positions 

calculated by the system jump by the time the vessels heading changes more then 45-90°. This has 

been observed during other cruises on other research vessels as well. IXSEA is informed about the 

problem. 
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6. Preliminary Results 

 

6.1. CTD, Seafloor and Parasound surveys 
(P. Wintersteller, T. Fleischmann, G. Bohrmann) 

 

CTD (Conductivity – Temperature – Depth) 

The shipside hydro-cask-rosette with an integrated SBE9plus CTD-probe from Sea-Bird Electronics, 

Inc. was used to collect data from the water column with focus on appropriate sound velocity profiles. 

The measured temperatures and conductivities, the later recalculated in salinity, shown in Figure 35, 

are evidence for a highly dynamic area. Within days there are big changes in the uppermost 200m of 

the water column. A reason for that are for sure the strong W-E-ward currents especially in the 

southern part of the Kumano basin. The very homogenous looking surface layer in CTD-1 can be 

explained by water masses mixed thoroughly due to stormy weather conditions. 

 

 
 

Figure 35: CTD data from cruise SO222. 
 

KONGSBERG EM120 Multibeam system 

During cruise SO222, we mapped an estimated area of 15951 km2, which resulted in a fairly complete 

spatial coverage of the Kumano Basin with its mud volcanoes (Fig. 36). Since the latter were the main 

focus of our research effort, it was exciting to see that the multibeam data revealed additional features 

(i.e. small domes previously not known / discovered). These encompass MVs #9 - #13, plus a number 

of features which appear to be a result of mud diaprisim and ascent, but where the mud apparently has 

not quite reached the seafloor (see also next section on Parasound profiling). 
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Figure 36: Bathymetric map acquired during cruise SO222. 
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The full information on the metadata to the Multibeam grid is: 
 
FILENAME=G:\SO222\EM120\SO222_EM120_MBproc\SO222_Kumano_A2C3F5E50proc.grd 
DESCRIPTION=SO222_Kumano_A2C3F5E50proc.grd 
UPPER	
  LEFT	
  X=135.6051000000 
UPPER	
  LEFT	
  Y=34.0375581538 
LOWER	
  RIGHT	
  X=137.0109170776 
LOWER	
  RIGHT	
  Y=32.9385000000 
WEST	
  LONGITUDE=135°	
  36.30600'	
  E 
NORTH	
  LATITUDE=34°	
  2.25349'	
  N 
EAST	
  LONGITUDE=137°	
  0.65502'	
  E 
SOUTH	
  LATITUDE=32°	
  56.31000'	
  N 
PROJ_DESC=Geographic	
  (Latitude/Longitude)	
  /	
  WGS84	
  /	
  arc	
  degrees 
PROJ_DATUM=WGS84 
PROJ_UNITS=arc	
  degrees 
EPSG_CODE=4326 
COVERED	
  AREA=15951	
  sq	
  km 
NUM	
  COLUMNS=2614 
NUM	
  ROWS=2439 
PIXEL	
  WIDTH=0.000538	
  arc	
  degrees 
PIXEL	
  HEIGHT=0.0004508	
  arc	
  degrees 
MIN	
  ELEVATION=-­‐3623.029	
  meters 
MAX	
  ELEVATION=-­‐732.934	
  meters 
ELEVATION	
  UNITS=meters 
BIT_DEPTH=24	
  
 
 
 

ATLAS PARASOUND profiling 

When acquiring geophysical information in the Kumano Basin, we covered a length of 543 km during 

leg SO222A and 1104 km length during leg SO222B. The tracks of where RV Sonne was going are 

shown in Figure 37. 

The majority of the profiles recorded with Parasound are of good quality and reveal subseafloor 

stratification and other geological features. Signal penetration was generally poor in the mud 

volcanoes, in particular along the steep flanks. This is partly explained by topography, and may have 

partly resulted from their incoherent geological evolution with absent stratification, large amounts of 

free gas, and substantial quantities of indurated clasts in the mud breccias (see section 6.5. below). 

One good example of active mud volcano KK #2 is given in Figure 38A where the collapsed, inward 

facing strata beneath the crest region is seen. A second example shows the imbriicated thrust slices in 

a long paradsound line which is underlain by the regional bathymetric chart (Fig. 38B). 

Post-cruise work will include processing of those data for publications. 
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Figure 37: Tracks from cruise SO222, with leg A in orange and leg B in green. 
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Figure 38: Parasound examples from cruise cruise SO222. (A) Short profile across active mud dome KK #2; (B) 

long profile from the outer forearc high across MV #12 into the Kumano basin, projected over a bathymetric 
“flying carpet” diagram of the frontal portion of the SO222 study area. 
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6.2. In situ temperature measurements 
(N. Kaul, B. Heesemann, T. Feseker, K. Asshoff) 
 

During both legs of this cruise, we conducted 110 in situ sediment temperature measurements in total. 

58 measurements were aimed at investigating the thermal structure of mud volcanoes in detail, while 

the remainder of the measurements served to map the regional background heat flow in the Kumano 

basin and the activity of faults. Compared to mud volcanoes in the Eastern Mediterranean or the 

Håkon Mosby mud volcano on the Barents Sea slope, the mud volcanoes in the Kumano basin are 

associated with very small thermal anomalies at the seabed, which points to a low level of activity. 

Only MV #2 and MV #3 showed geothermal gradients that were raised significantly above the 

background level of between 0.03 and 0.06 °C/m (Tab. 5). As illustrated in Figure 39, the geothermal 

gradient at MV #2 mirrors the bathymetry, suggesting that seepage is focused at the highest point of 

the mud volcano. 

 

One of the heat flow transects crossed a fault in the central Kumano basin, which had been observed 

in seismic lines. Figure 39 shows that the fault seems to be associated with a local increase in 

geothermal gradient. Another transect east of MV #4 and MV #5 crossed a morphological step in the 

bathymetry. Here, the relationship between water depth and geothermal gradient illustrates the effect 

of the topography on heat flow. 

 
Table 5. Temperature gradients in the different mud volcanoes visited with the in situ HF probe. 

 MV #2 MV #3 MV #4 MV #5 MV #9 MV #10 MV #13 
Max. geothermal 
gradient [°C/m] 0.290 0.122 0.064 n/a 0.062 0.044 0.055 
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Figure 39: Bathymetry and geothermal gradient along a transect lines across MV #2 (top), across a fault in the central 
Kumano basin (middle), and across a morphological step in the bathymetry east of MV #4 and MV #5 (bottom). The 

numbers indicate the GeoB-numbers of the stations. 
 

 
 
 
 



  70 

 
 
6.3. In situ CPT testing 

(M. Lange, A. Steiner, A. Kopf) 
 
 

During SO222 cruise, a total of 10 DWFF-CPTU measurements were conducted at three different 

mud volcanoes (MV #2, 3 and 4). The measurements are located on top and down-slope of these MVs 

(Table 6). 
 

Table 6: Selected protocols from DWFF-CPTU deployments. 
 

GeoB

167x

x-­‐yy	
  

pos.	
  Lat	
   pos.	
  Lon	
   date	
  
WD	
   ν0	
  

penetr.	
  

depth	
   probe	
   MV	
  No.	
  

[m]	
   [m/s]	
   [m]	
  

10-­‐01	
   33°	
  37.97'	
  N	
   136°	
  40.20'	
  E	
   17.06.12	
   1954	
   1.27	
   1.1	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
3	
  

10-­‐02	
   33°	
  37.95'	
  N	
   136°	
  40.15'	
  E	
   17.06.12	
   1953	
   1.24	
   2.4	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
3	
  

10-­‐03	
   33°	
  37.93'	
  N	
   136°	
  40.10'	
  E	
   17.06.12	
   1980	
   failed	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
3	
  

10-­‐04	
   33°	
  37.90'	
  N	
   136°	
  40.00'	
  E	
   17.06.12	
   1971	
   1.26	
   2.2	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
3	
  

30-­‐01	
   33°	
  39.38'	
  N	
   136°	
  38.01'	
  E	
   24.06.12	
   1974	
   0.93	
   2.1	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
4	
  

30-­‐02	
   33°	
  39.44'	
  N	
   136°	
  38.03'	
  E	
   24.06.12	
   1986	
   1.46	
   1.5	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
4	
  

30-­‐03	
   33°	
  39.49'	
  N	
   136°	
  38.04'	
  E	
   24.06.12	
   2040	
   1.29	
   2.9	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
4	
  

73-­‐01	
   33°	
  40.65'	
  N	
   136°	
  55.20'	
  E	
   09.07.12	
   2004	
   unprocessed	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
2	
  

73-­‐02	
   33°	
  40.60'	
  N	
   136°	
  55.25'	
  E	
   09.07.12	
   2003	
   unprocessed	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
2	
  

77-­‐01	
   33°	
  40.64'	
  N	
   136°	
  55.19'	
  E	
   10.07.12	
   2014	
   unprocessed	
  
length	
  4.1	
  m;	
  tip	
  

pp;	
  u2	
  and	
  u3	
  
2	
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The water depth varies between 1950 and 2050 mbsl (meter below sea-level). The penetration rate 

ranges between 0.9 and 1.5 m/s resulting in penetration depths of 1.1 to 2.9 m. 

The DWFF-CPTU tests address following strategies: 

• Comparison between DWFF-CPTU measurements and gravity core data (fall-cone 

experiments [f-c]) with respect to the strain-rate correction of the in-situ data. 

• In situ characterisation of the MV shallow sediment succession in order to evaluate the 

fluid/gas conditions, consolidation settings and strength properties. 

 

Mud volcano #3 
The first 4 DWFF-CPTU deployments were undertaken on top of the MV #3. One of the dynamic-

CPTU tests (16710-03) fails due to technical problems of the equipment (logging failure). All other 

tests present probable results displayed in Figure 40, which comprises three CPTU measurements 

represented by the excess pore-water pressure (pp) evolution during failure measured at two different 

pp ports (Δu2 and Δu3). Based on these data sets, the undrained shear-strength (su) are derived using 

the empirical excess pp factor (NΔu1-3). In addition, the lithological core description including core 

photo and f-c shear-strength of two adjacent gravity cores are illustrated (GeoB16712 and -16735). 

The lithology is subjected by homogeneous to slightly heterogeneous clay to silty clay with irregular 

distributed clasts (sandstone to siltstone). Single sharp stratigraphical features are detected in these 

two cores. The excess pp varies between 5 and 20 kPa exclude the first meter of the CPTU 

measurements. In this first section, positive peaks up to 60 kPa are encountered. These peaks are 

probably caused by gas/fluid escape structures or gas hydrate. The su distribution shows values up to 

20 kPa. A very good agreements between the f-c and in-situ data can be seen. Slightly discrepancies 

can be described by the occurrence of gas/fluid structures and gas hydrate as well as by the fact that 

core and in situ test location are not exact equal (vessel movements).  

 

The consolidation state can be described as normally- to slightly over-consolidated with undrained 

shear-strength ratios (su/σ'v0) of 0.2 to 0.6. More data will be acquired during post-cruise 

geological/geotechnical laboratory measurements (standard- and advanced experiments). 
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Figure 40: Results from CPTu deployment at MV #3. Corrected excess pore-water pressure behind the tip (Δu2) and 

0.35 m behind the tip (Δu3) for the MV #3 (GeoB16710-01, -02 and -04). Additionally, the derived undrained 
shear-strength (su) of the DWFF-CPTU measurements compared with the f-c data (GeoB16712 and 35) are 

illustrated. All dynamic-CPTU data sets are strain-rate corrected using the state-of-the-art ARCSINH-function 
described in Mitchell & Soga (1976). See also Table 6. 
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Mud volcano #4 
In total, 3 DWFF-CPTU tests were carried out on top and down-slope of the MV #4 (Fig. 41), which  

illustrates CPTU measurements represented by the excess pore-water pressure (pp) evolution during 

failure measured at two different pp ports (Δu2 and Δu3). Based on these data sets, the undrained 

shear-strength (su) are derived using the empirical excess pp factor (NΔu1-3). In addition, the 

lithological core description including core photo and f-c shear-strength of two adjacent gravity cores 

are illustrated (GeoB16725 and -16736). The stratigraphical sequence is characterized by 

homogeneous to slightly heterogeneous clay to silty clay including irregular scattered clasts of 

sandstone and siltstone. The in-situ measurements (GeoB16730-01 and -02) show a sharp step 

between soft and stiff sediments at penetration depth of 0.6 m. This step are also detected in the f-c 

experiments. The excess pore-water pressure of the sediments varies between 5 and 20 kPa for the 

first 0.6 m and increase up to 60 kPa in the deeper sections. In test GeoB16730-03, this sharp increase 

are not encountered due to the fact that the location of this tests is at the shoulder area of the MV #4. 

Hence, only homogeneous slope sediments were characterized. The derived in-situ undrained shear 

strength varies from 5.0 to 10 kPa with an increase to approx. 15 kPa at >0.6 mbsf for GeoB16730_01 

and _02. The dominated sediments are normally-consolidated to slightly over-consolidated due to a 

undrained shear-strength ratio (su/σv0') of 0.2 to 0.5. The consolidation state of the increases section is 

describes by su/σ'v0 values up to 1.3 characteristic for highly over-consolidated sediments. 
 

In all tests, fluid/gas structures, coarser sediments and angular to well rounded clasts are scattered 

along the sediment succession. More data will be acquired during post-cruise geological/geotechnical 

laboratory measurements (standard- and advanced tests). 
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Figure 41: Results from CPTu deployment at MV #4. Corrected excess pore-water pressure behind the tip (Δu2) and 

0.35 m behind the tip (Δu3) for the MV #4 (GeoB16730_01 to _03). Additionally, the derived undrained shear-
strength (su) of the DWFF-CPTU measurements compared with the f-c data (GeoB16725 and -36) are illustrated. 
All dynamic-CPTU data sets are strain-rate corrected using the state-of-the-art ARCSINH-function described in 

Mitchell & Soga (1976). See also Table 6. 
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Two additional dynamic-CPTU tests were carried out at MV #2, however, those data have not been 

processed yet. 

 

 
6.4. CAT-meters 
(M. Tryon)  
 

During SO222B, 2 CAT meters each were deployed on mud volcanoes #2, 3, and 4 (Fig. 42). 

These site were determined to be our best strategy for detecting and sampling fluid flow and fluid 

chemistry, based on the cores retrieved at each. The locations and times of deployments are tabulated 

at the end of this section (Table 7). Deployment was accomplished by lowering them to the sea floor 

via wire and releasing. Subsequently some of them were revisited by the ROV to inspect whether the 

sampling chamber has sealed against the seafloor (see also section 6.8 below). 

 
Figure 42: Map showing the locations of the CAT meter deployments.  

 
Table 7: Positions of CAT meters deployed during cruise SO222. 
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6.5. MeBo- and Gravity coring / sediment description / IR imagery 
(M. Vahlenkamp, A. Hüpers, S. Hammerschmidt, M. Belke-Brea, J. Wei, A. Kopf, M. 
Bergenthal, R. Düßmann, K. Kaszemeik, S. Klar, C. Noorlander, U. Rosiak, U. Spiesecke, A. 
Stachowski, W. Schmidt, C. Seiter) 
 
 

Core description 
A total of 51 gravity cores were taken during cruise SO222, of which 44 had at least some recovery. 

A 6m long core barrel was used to obtain sediment cores from the Kumano basin. The majority of the 

cores were taken on the tops or flanks of the several mud volcanos within the basin which were 

compared to reference cores showing background sedimentation. Additionally six MeBo cores of up 

to 35.6 m length were drilled at selected mud volcanoes (also known as Kumano Knolls, or KK). 

Three of the MeBo cores were taken at Kumano Knoll (KK) #3, two cores at KK #4 and another one 

on top of MV #10. The MeBo cores taken in the center of the mud volcanos revealed the presence of 

mud breccia to >15m depth with no other lithologies recovered from below. GeoB 16728 was taken 

on the N-flank of MV #4 and showed strongly varying lithologies. Recovery of MeBo cores was 

generally fairly low averaging between 40-50%.  

A list of all gravity- and MeBo cores, also including TV grabs (see section 6.10. below) during cruise 

SO222, sorted by the topographic features where they were taken, is listed in Table 8. 

 
Table 8: List of TV grabs, gravity- and MEBO core stations during SO222. Legend: MB, MS = mud breccia, mud stone; 

BS = background sediment; ~BS, ~MB = intersections; AL = ash layer; AP, AC = ash patch, clast; T = turbidite; SS = 
black sandstone; G = graphite; GH = gas hydrates; FES = fluid escape structures/dykes/conduits; WF = wood fragments; 

H2S = hydrogen sulfide. For further abbreviations used, see Figure 22. 

	
   Site	
   recovery	
   Water	
  
depth	
   remarks	
   Lith.	
  (Top	
  -­‐-­‐>	
  

Bottom)	
   features	
  

	
  KK	
  #2	
  	
  	
  	
  	
   	
   	
   	
   	
   	
   	
  
	
  	
   16764	
   269	
   1988	
   top	
   MB	
   GH,	
  H2S	
  

	
  	
   16770	
   0	
   2000	
   no	
  recovery	
   	
  	
   	
  	
  
	
  	
   16771	
   259	
   2000	
   	
  	
   MS,	
  MB	
   GH,	
  H2S	
  
	
  	
   16772	
   322	
   2000	
   	
  	
   MS,	
  MB	
   GH,	
  H2S	
  

	
  	
  
16788-­‐

1	
  
plastic	
  
hose	
   1992	
   top	
   MB	
   GH,H2S	
  

	
  	
  
16788-­‐

2	
  
plastic	
  
hose	
   1993	
   top	
   MB	
   GH,H2S	
  

	
  	
   16793	
   0	
   	
  	
   no	
  recovery	
   	
  	
   	
  	
  
KK	
  #3	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  

	
   16703-­‐
1	
   320	
   1945	
   top	
   MB	
   -­‐	
  

	
   16704	
   270	
   2017	
   MV#3	
  NE-­‐flank	
   MB	
   -­‐	
  
	
   16709	
   1102	
   1950	
   MeBo	
  N’	
  flank	
   MB	
   -­‐	
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   16711	
   353	
   1950	
   MeBo	
  top	
   MB	
   -­‐	
  
	
   16712	
   256	
   1942	
   top	
   MB	
   H2S	
  
	
   16713	
   -­‐	
   1940	
   TV	
  Grab	
   MB	
   -­‐	
  
	
   16731	
   25	
   2028	
   NE-­‐flank	
   MB	
   -­‐	
  

	
   16732	
   1182	
   2032	
   MeBo	
  NE-­‐flank	
   MB,	
  BS,	
  MB	
  
(~BS),	
  AL	
   AP,	
  AC	
  

	
   16735	
   400	
   2030	
   NE-­‐flank	
   MB,	
  MB	
  (~BS)	
   -­‐	
  

	
  	
  
16785-­‐

2	
   200	
   1945	
   top	
   MB	
   H2S	
  

KK	
  #4	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  

	
  	
   16722-­‐
1	
   0	
   1980	
   no	
  recovery	
   -­‐	
   -­‐	
  

	
  	
   16722-­‐
2	
   306	
   1980	
   Top	
   MB	
   GH,H2S	
  

	
  	
   16723	
   365	
   2050	
   NE-­‐flank	
   MB	
   H2S,	
  AC	
  
	
  	
   16725	
   240	
   1970	
   top	
   MB	
   GH,H2S	
  
	
  	
   16726	
   338	
   2052	
   N-­‐flank	
   BS	
   T	
  

	
  	
   16727	
   338	
   2007	
   MV	
  #4	
  Mud	
  
ridge	
   BS	
   -­‐	
  

	
  	
   16728	
   457	
   2043	
   MeBo	
  N-­‐flank	
  
BS,	
  MB,	
  BS,	
  SS,	
  
AL,	
  SS,	
  G,	
  SS	
  
(~BS),	
  G,	
  SS	
  

AC	
  

	
  	
   16729	
   400	
   2016	
   Mud	
  ridge	
   BS,	
  AL,	
  BS	
   AP	
  
	
  	
   16736	
   115	
   1980	
   Top	
   MB	
   GH,H2S,	
  AC	
  

	
  	
   16737	
   165	
   1981	
   MeBo	
  top	
   MB	
   -­‐	
  
	
  	
   16754	
   254	
   2030	
   N-­‐flank	
   MB	
   H2S	
  

KK	
  #5	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16746	
   200	
   1900	
   top	
   MB	
   GH,H2S,	
  AP	
  
	
  	
   16747	
   21	
   1906	
   top	
   	
  MB	
   -­‐	
  

	
  	
  
16748	
   166	
   1934	
   SW-­‐flank	
   MB	
   -­‐	
  

KK	
  #6	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16749	
   300	
   1924	
   top	
   BS	
   AP	
  
	
  	
   16750	
   320	
   1926	
   top	
   BS,	
  MB	
   AP	
  

KK	
  #7	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16751	
   20	
   1935	
   top	
   BS,	
  AL,	
  BS	
   T	
  

KK	
  #8	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16707	
   360	
   2025	
   N-­‐flank	
   BS	
  (~MB)	
   H2S	
  
	
  	
   16720	
   573	
   2020	
   Top	
   BS	
   H2S,	
  AC	
  

KK	
  #9	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16708	
   284	
   2044	
   NW-­‐flank	
   BS	
   H2S	
  
	
  	
   16721	
   576	
   2050	
   top	
   BS	
  	
   T	
  
	
  	
   16734	
   226	
   2057	
   N-­‐flank	
   BS	
   H2S,	
  AP	
  

KK	
  #10	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  

	
  	
  
16716-­‐

1	
   0	
   1825	
   no	
  recovery	
   -­‐	
   -­‐	
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16716-­‐

2	
   137	
   1825	
   top	
   MB	
   GH,H2S	
  

	
  	
   16717	
   0	
   1816	
   no	
  recovery	
   -­‐	
   -­‐	
  
	
  	
   16740	
   65	
   1824	
   top	
   MB	
   -­‐	
  
	
  	
   16741	
   156	
   1823	
   MeBo	
  top	
   MB	
   -­‐	
  
	
  	
   16743	
   100	
   1825	
   top	
   MB	
   -­‐	
  

NE	
  of	
  KK	
  #10	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16738	
   475	
   1828	
   mud	
  wedge	
   BS,	
  AL	
   H2S	
  
	
  	
   16739	
   575	
   1900	
   mud	
  wedge	
   BS,	
  AL,	
  BS	
   H2S,	
  AC	
  

KK	
  #11	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16756	
   425	
   2010	
   NE	
  top	
   MS,	
  AL,	
  MS	
   H2S	
  
	
  	
   16757	
   469	
   2000	
   top	
   MS	
   H2S	
  

KK	
  #12	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16759	
   558	
   2050	
   	
  	
   BS	
   H2S,	
  AP,	
  T	
  
	
  	
   16762	
   74	
   2010	
   top	
   MB	
   H2S	
  

KK	
  #13	
  	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16780	
   0	
   1870	
   no	
  recovery	
   	
  	
   	
  	
  

	
  
16781	
   370	
   1880	
   	
  	
   BS,	
  MB	
   WF,	
  H2S	
  

	
  	
  
16782-­‐

1	
   0	
   1891	
   no	
  recovery	
   	
  	
   	
  	
  

	
  	
  
16782-­‐

2	
   300	
   1890	
   top	
   MB	
   AC	
  

KK	
  #14	
  	
  	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  

	
  	
  

16791-­‐
2	
   479	
   2000	
   	
  	
   BS	
   H2S,	
  FES	
  

Background	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   16758	
   400	
   2040	
   	
  	
   BS	
   T,	
  WF	
  
	
  	
   16763	
   370	
   2012	
   	
  	
   BS	
   AP,	
  T	
  

 

Two main lithologies were recovered by gravity coring within the upper 6m during SO222: 

1. Stiff to soupy or moussy dark grey claystone with clasts of various sizes (mm-cm) (Fig. 43). The 

clasts found within the mud breccia are claystones of various degree of consolidation, but also 

lithified sedimentary rocks (mudstones, fine to coarse grained ashes and sandstones). Degassing 

structures were abundant in several cores where small gas hydrate chips, a few centimeters in size, 

disintegrated. This lithology was interpreted as mud breccia. Clasts are thought to be transported 

upwards from the lower Kumano Basin or the accretionary prism. Post-cruise analyses will hopefully 

clarify this aspect. 

2. Dark grey to very dark greenish grey silty claystone (Fig. 44). Silty to sandy lenses and turbidite 

layers of very dark grey colour occur in an apparent regular spacing of almost every 10 – 40 cm. 

Foraminifera and shell fragments are rare, dewatering structures are present in several sections. This 

lithology was interpreted as Kumano Basin background sediment. 
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Figure 43: Consolidated, dark grey mud breccia from the northern flank of KK #4 (GeoB 16723).  

Note the clasts of a few cm size. 
 

 
Figure 44: Consolidated, dark greenish grey claystone from a reference location 

in the Kumano basin (GeoB16758). Note the black silty turbidites. 
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Figure 45: Mousse-like, dark  grey mud breccia from the top of KK #2 (GeoB16764). 

 

Cores were taken at 13 different mud volcanos (Kumano Knolls #2-14). Table 8 specifies in detail 

how many cores were taken on which feature and gives a short summary of the lithological 

observations plus the length of the recovered sections. 

In general, the group of features sampled can be broadly divided into active and currently inactive 

ones, with the recovery of grey mud or mud breccia and the presence of gas hydrates having been the 

main criterion.  

Most cores were taken on KKs #2, 3, 4 and 10 where dark grey mud breccia or mudstone was found 

in the center of the mud volcano, accompanied by a strong smell of H2S. Gas hydrates were found at 

KKs #2, 4 and 10. Together with data from pore water and gas chemistry our observations suggest 

that these features are among the most active ones in the Kumano basin, especially KK #2. The 

presence of free gas as well as gas hydrate causes the texture to appear mousse-like (Fig. 45), similar 

to what has been described in the Mediterranean Sea, e.g. for Napoli MV (Emeis et al., 1996). 

	
  

From the eight cores taken at KK #4, a fairly comprehensive picture can be gained, as shown in 

Figure 46. Gravity cores GeoB16725, -16736, -16722-2, -16754 and -16723 indicate that the top and 
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the northern flank of the feature are build up by mud breccia, which is also suggested by the steep 

angle of the flanks. MeBo core GeoB16737 covers depths of 14-19 mbsf at the top of KK #4 and 

shows that the mud breccia extends to greater depth. At the location of gravity core GeoB16726 at the 

northern base of the feature Kumano basin background sediment is recovered which overlies the mud 

breccia. An exception from the previously described succession can be found in MeBo Core 

GeoB16728 further north, which shows unusual sedimentary structures at the base. Here, background 

sediment is underlain by mud breccia and black sands and graphite-like clays, partly with slumping 

structures in depth intervals of 7 to 16 mbsf. Those layering at the base of the northern flank of the 

feature is tentatively interpreted as products of earlier phases of mud volcanism; post-cruise work will  

include dating of those event layers and XRD analysis to identify the main minerals.  

 

 

Figure 46: Schematic cross section of Kumano Knoll 4 including lithologs of gravity and MeBo cores. 
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Cores taken on KK #2 look similar, but contain extremely mousse-like, grey mud breccia with clasts 

of mm-cm size (Fig. 45). Elongated gas hydrate chips of up to 5 cm in length were sampled from all 

cores on this feature. KK #2 is the mud volcano with the highest presence of gas hydrates investigated 

during cruise SO222. KKs #3 and 10 show very much the same lithologies and structure as the ones 

mentioned before. 

 

At Kumano Knolls #5, 12 and 13 two to three coring attempts with recovery each have been carried 

out. Mud breccia was found on top of all three mud domes, too, and was overlain by background 

sediment at the flanks of KKs #12 and 13. 

Cores from mud volcano #11 contain no mud breccia but grey mud, which is also interpreted as a 

product of mud volcanism in the Kumano Basin. Based on observations in the sediment we suggest 

that all these mud volcanoes were recently active. However, no active fluid seepage could be 

observed on either of those KKs (see also in situ temperature data, section 6.2 above).  

On the remaining features, including KKs #6, 7, 8, 9, 14 and the mud ridge near KK #10, no mud 

breccia has been recovered or the mud breccia is overlain by Kumano Basin background sediment. 

We suggest that these features were recently dormant. Background sedimentation on the mud 

volcanoes and in the basin is to a large extend interrupted by very dark grey to black, silty turbidites 

with an erosional contact at the base and a gradual contact (Fig. 44). Usually these layers are only ca. 

1-3 cm thick, but in some cores, especially GeoB16758, a large fraction of wood fragments is present 

within the turbidite layers (reaching up to 15 cm in thickness). These turbidites seem to occur 

regularly between every 15 – 30 cm in parts of the succession recovered. The regular spacing of the 

turbidites might reflect the seismic cycle of the Nankai Subduction Zone which nowadays generates 

earthquakes of magnitude 8 and higher every 100-200 years (Ando 1975). Dating of the event layers 

will be carried out and allow a better understanding of those processes. Distinct layers of fine white 

ash and thickness of a few cm have been discovered in cores GeoB16728, -16729, -16732, -16738, -

16739, -16751 and -16756 and will be helpful with the development of an age model. In many cores 

the background sediment shows water filled vugs of ~ 1cm diameter. We interpret these structures as 

channels through which fluids can migrate upwards.  

 

MeBo deployments 

Apart from the standard coring routines, MeBo’s main task during expedition SO222 was the 

deployment of long-term monitoring systems. In total, four observatories were successfully installed 



  83 

during the cruise (see Table 9, which also contains some drilling statistics). MeBo was deployed for a 

total of ca. 126 hours; detailed information on deployment of MeBo and recovery of sediments is 

summarised in Table 9 and the station list (Appendix 9.1). 

 

  Table 9: Station list for MeBo deployments. 

Station 
GeoB 
No. 

Deployment 
duration 
[hrs:min] 

Latitude [N] Longitude [E] Water 
depth 
[m] 

Drill 
depth 
[cm] 

Coring 
interval 

[cm] 

Recovery 
[cm] 
[%] 

Remarks 

16709 27:09 33° 38’ 01.6’’ 136° 40’ 
15.4’’ 

1951 2855 0-2855 1102 cm 
 39% 

Drill string 
length 30.9m; 
sealed with 
MeBo Plug 1 

16711 24:40 33° 38’ 00.8’’ 136° 40’ 
16.3’’ 

1951 3325 2620 – 
3325 

354 cm 
50% 

Drill string 
length 33.3m 
sealed with 
MeBo Cork B 

16728 17:45 33° 39' 32.5'' 136° 38' 00.9'' 2055 1710 0-1710 419 cm 
25% 

Drill string 
length 17.5m 
sealed with 
MeBo Plug 2 

16732 10:30 33° 38' 13.3'' 136° 40' 30.0'' 2035 3560 0-3560 1182 cm 
33%  

16737 12:15 33° 39' 21.3'' 136° 38' 02.2'' 1980 1895 1445-
1895 

72 cm 
16 % 

Drill string 
length m 
sealed with 
MeBo Cork A 

16741 11:15 33° 32' 51.9'' 136° 16' 56.5'' 1830 1445 0-1445  Core recovery 
is not reported 

Total 126:34    14790 10725 3129 cm 
33 % 

16741 not 
included 

 
In situ T-measurements using MeBo 
Figure 47 shows temperature measurements with the soft sediment cone in three different depth 

(9.8m, 19m and 28m). With the feeding system the tip was pushed approx. 20cm into the sediment. 

The start of each curve were aligned. The graphs shows the typical increase of temperature due to the 

friction after pushing the tip into the sediment. An increasing temperature with depth is also observed, 

which is in good agreement with the in situ heat flow data at the same site (see section 6.2 above). 

Furthermore the curve at 28m shows a little increase of temperature with time, which can be 

interpreted as a cause of gas hydrates forming. 
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Figure 47: MeBo Temperature measurements at station GeoB 16732. 

 
 
IR imagery 
 

In order to get coherent IR images of the core, all raw data were imported into the ThermaCAM™ 

Researcher Professional software. Based on the observation and test, the color scales of most gravity 

cores were set to be 12-30°C which shows the best performance of the three major constituents: gas 

hydrate, normal sediment and voids. Then all the raw data were output as bitmap files for further 

processing on the PC. During this procedure all the images were rotated and scaled in order to make 

all the core sections horizontal and the same diameter. Finally, using the obvious hot or cold reference 

points, the images were connected. All the measurements performed are listed in Table 10. 

 
Table 10: all IR measurements from SO222 and basic information 

GeoB No. Image number Remarks 
16703 52-64 disseminated GH in CC 
16709 66-120 Poor recovery without gas hydrate(GH), no image process 
16711 122-146 Poor recovery without GH, no image process 
16716 157-159 round rock in the core catcher disseminated GH in CC 

16720 160-172 
two images for one core section (1m), core_5 is 74cm long,GH 
observed at 4.4m from bottom 

16721 173-185 Poor recovery without GH, no image process 
16722-2 186-197 disseminated GH in CC and in the bottom 1m (sampled) 

16723 198-209 1.4mbsf soupy(4cm) 
16725 217-228 disseminated GH in CC 
16726 229-240  
16727 241-252  
16728 254-290 Poor recovery without GH, no image process 
16729 291-302  
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16732 303-368 Poor recovery without GH, no image process 
16734 369-379  
16735 380-391  
16736 392-403 GH in CC 
16737 404-411 Poor recovery without GH, no image process 
16738 412-422  
16739 423-434  
16741 435-439 Poor recovery without GH, no image process 
16742 440-443  
16746 444-455 GH in CC 
16747 456 Empty core 
16748 457-467  
16749 468-479  
16750 480-491  
16751 492-504  

 

Downcore thermal imaging was performed on the cores and results are presented in the appendix. In 

general, temperatures measured on the surface of the liner can be divided into four categories which 

represent gas hydrate, normal sediment, voids and artefacts as show in Figure 48 varying between 12 

and 30°C. Those temperatures are clearly not representing in-situ temperatures of the seafloor 

sediments which are around 2° C depending on the depth below seafloor. The thermal structure of the 

cores developed during the ascent trough the water column and within the air temperature plus 

additional influence by frictional heating during the core handling. Background temperatures of 

gravity core liners which have been filled by muddy sediments were calculated between 16-20°C 

depending on how long the cores have been retrieved before the IR imaging was performed. In 

general the cores were imaged immediately when on deck. Anomalies from the background 

temperature occur in both directions (Fig. 48). Negative thermal anomalies are generally associated 

with gas hydrates, whereas gaps in the liners are represented by positive anomalies. The gaps were 

dominantly developed due to gas expansion and/or dissociation of disseminated gas hydrates during 

the decompression and heating process during the ascent of cores. In general gaps show up with warm 

anomalies because of the low heat capacity of gas in comparison with sediment. Some higher 

temperature values are also related to further artificial heating when liners were taken by hands during 

transportation on deck. Cold spots or patches are clearly related to gas hydrates. This was well 

observed when the core is on deck. Only a few gravity cores show gas hydrate occurrence and no gas 

hydrate in the MeBo cores within IR thermal scanning. 
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Figure 48: Infrared record of gravity cores GeoB16722-2 (left) and GeoB16725 (right). 

 

 
6.6. Physical properties 

(M. Ikari, T. Ojima, M. Belke-Brea) 

 
Shear strength was measured aboard RV Sonne on all cores recovered that had sufficient core 

recovery (i.e. a coherent internal structure and intact core in the PVC liner). Both devices, the fall 

cone penetrometer and the vane shear apparatus were used in parallel, however, the spacing with fall 

cone was much narrower (every 5 cm) than for the more destructive vane shear method where we did 

1-2 measurements per core segment. 

Figures 49 – 51 show three exemplary examples of the results obtained in different lithologies. All 

other data will be published as part of a printed cruise report in “Berichte aus dem Fachbereich 

Geowissenschaften der Universität Bremen” shortly, both electronically as well as in the Appendix 

(together with lithologs of sediment description). 

Figures 49 and 50 represent examples from mud breccia sediments from two active features, MV# 3 

and MV#8 show weak to moderately strong shear strength of sediment, usually well below 10 kPa 

within the uppermost meters below seafloor. For MV#8, vane shear and fall cone data show a good 

agreement, while for MV#3, vane shear is higher than the dynamic fall cone values. This is 

unexpected, but was observed in other MV cores as well. A tentative explanation is the high 

abundance of small mudclasts within the matrix of the mud breccia, which may not affect the tip of 

fall cone during penetration. Thoise mudclasts may, however, get in the way of the rotating blöades of 

the vain, this way pushing those readings to higher values. Figure 51 provides an example from 

inactive mud volcanao KK #7 in the north of the research area (Fig. 8). Here, hemipelagic background 

sediment with occasional turbidite and ash layers is found. The ash layer in particular shows 

unusually high strength, which is in agreement with similar horizons elsewhere. 
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Figure 49: Shear strength from vane shear and fall cone devices compared to lithologs and core observations from station 
GeoB16703 where mud breccia was recovered from MV #3. 
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Figure 50: Shear strength from vane shear and fall cone devices compared to lithologs and core observations from station 

GeoB16707 on mud volcano KK #7. 
 



  89 

 
 

Figure 51: Shear strength from vane shear and fall cone devices compared to lithologs and core observations from station 
GeoB16751. 
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6.7. Fluid geochemistry 
(T. Pape, P. Geprägs, M. Tryon, A. Bräunig, M. Madison) 

 
6.7.1. Gas chemistry 

Regarding the molecular composition of gas hydrate-bound gas, light hydrocarbons were recovered 

from MVs #2, #4 and #10 with the gravity corer were strongly dominated by methane (CH4 ≥96.865 

mol% ΣC1 to n-C4), followed by C2H6 (1.035 – 3.105 mol%) and C3H8 (≤ 0.373 mol%; Table 11). 

Higher homologues, such as butane and pentane isomers, occurred in much smaller portions or were 

even below detection limit. The data of KK #5 are different. The C1/C2 ratio with a value of 1,512 is 

very high compared to the other mud volcanos so the impact of microbial gas is much higher at this 

site (Fig. 52). The respective C1/C2 ratios of all samples with thermogenic signature ranged between 

31 and 256, suggesting that light hydrocarbons in shallow sediments of both mud volcanic structures 

predominantly originate from thermocatalytic processes (Bernard, 1976) most likely taking place at 

greater depths.  

In addition, the virtual absence of hydrocarbons ≥C3 suggests that the crystallographic structure I is 

the dominant hydrate phase at all sites. 

 
Table 11: Molecular composition of hydrate-bound gas (in mol-% ∑[C1 to n-C4]) prepared from hydrate pieces at mud 

volcanoes KK #2, 4, 5, and 10. 
 

GeoB Mud Volcano # C1/C2 C1 C2 C3 i-C4 n-C4 n 

    [mol%] [mol%] [mol%] [mol%] [mol%]   
16722-2 4 31 96.865 3.105 tr. tr. tr. 1 
16725-1 4 55 98.163 1.807 tr. tr. tr. 1 
16736-1 4 59 98.226 1.771 tr. tr. tr. 2 
16716-2 10 65 98.486 1.035 0.373 0.095 0.012 3 
16746-1 5 1.512 99.929 0.079 tr. tr. tr. 2 
16764-1 2 256 99.611 0.406 tr. tr. tr. 1 
16771-1 2 264 99.623 0.394 tr. tr. tr. 1 
16772-1 2 178 99.440 0.574 tr. tr. tr. 1 
16788-1 2 214 99.535 0.479 tr. tr. tr. 1 
16788-2 2 213 99.555 0.480 tr. tr. tr. 1 
 
n = number of samples analysed (mean value) 
tr. = trace (≤ 0.01 mol%) 
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Figure 52: Graphic representation of the C1/C2-C4 values for the mud domes sampled for gas hydrates. See text. 

 
 

6.7.2. Pore water chemistry 

During expedition SO222 we collected 651 samples for pore water analysis, 101 from the six 

MeBo cores and 550 from a total of 39 gravity cores.  

The only measurement of composition made on board was salinity. This was done with a 

handheld refractometer with a resolution of 1 unit. This simple and rapid measurement is useful for 

checking for pore water freshening due to gas hydrate dissociation or deep-sourced fluids freshened 

by mineral dehydration. Figure 53 shows the wealth of results of these measurements. With few 

exceptions, the cores from mud volcanoes indicate two trends of freshening with depth. Our initial 

thoughts on this is that the large amount of shallow freshening in the gravity cores are due to gas 

hydrate dissociation during core recovery and processing (see example from KK #2, Fig. 54A), and 

the deeper freshening trend may be due to advection of fluids influence by mineral dehydration at 

great depth. 

In all plots, we provide reference cirves for simple advection models with rates of 1mm/yr, 2 

mm/yr and 10 mm/yr. Figures 54B and 54C show examples from gravity cores at MV #11 and #13, 

respectively; those data fit well the assumed trends of 2mm/yr and 1 mm/yr. The best depth profiles 

were gained from the MeBo drilling, and despite the smaller diameter of the core and potential 

contamination with seawater while the core is sitting in the magazine (while the MeBo is drilling 

deeper), the downhole trends seem to be reliable. For instance, the “reference” drill hole at the 
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northern slope break of MV #3 (GeoB16732; blue curve on right in Fig. 53 that extends to ca. 35 

mbsf) shows compositions close to seawater with very little freshening, if at al. By contrast, MeBo 

core GeoB16709 at the crest of MV #3 shows a 25m-long downhole record towards 5-10 g/l (or appx. 

15-20 % SW concentration), aligning well with a 2mm/yr advection rate. 

 

 
Figure 53: Plot of salinity vs. depth (cm) for the cores collected during cruise SO222. 

 

 

Shore-based analyses will shed additional light on other element concentrations that may or may not 

be enriched or depleted based on the abovementioned processes. Preliminary results from ICP-OES 

on some of the fluids suggest unusually high B contents in some cores, and both Li enrichment and Li 

depletion in other cores. Additional stable isotope studies, in particular on those two elements, are 

envisaged. 
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Figure 54: Plot of salinity vs. depth (cm) for the cores collected at MV # 2 (A), #11 (B) and #13 (C) during SO222B. 
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6.8. ROV operations 
(C. Seiter, G. Bohrmann, etc.) 

 
Operated by a team of 8 pilots and technicians, “QUEST 4000m” performed 2 dives (“QUEST 

4000m” dive #320 and dive # 321) to 1950 m and 2055 m of water depth with a mean bottom time of 

10.5 hours and an overall total dive time of 27.7 hours (see Table 12 for details). 

Due to electric shorts affecting the hydraulic power unit and leading to intensive and time consuming 

maintenance operations, QUEST‘s technical conditions did not allow to perform further dives. 

 
Table 12: Dive summary ROV “QUEST 4000m” during SO222B “MEMO” (all times UTC). 

 
 

Dive operations included bottom unit installation on leg SO222A Marum sea bed drill rig “Mebo” 

deployed MeBoCORK B, sensor recovery with ship’s wire support, sediment sampling, in situ 

temperature measurements in the surface sediment, and video/still photo surveys. 

Close cooperation between ROV team and ships crew on deck and bridge allowed a smooth and 

professional handling during all “QUEST 4000m” launch and recovery situations. During diving, this 

cooperation also allowed precise positioning and navigation of both ship and ROV, which was 

essential for accurate scientific and technical installation operation tasks aswell as for “QUEST 

4000m” umbilical management with an additional umbilical beacon at depth. The ROV team is very 

grateful for this kind of steady support from the entire ship’s crew during the cruise. 

 
 
6.8.1 Dive 320  (GeoB 16753-1) on Mud Volcano #4 
 
Protocol: Gerhard Bohrmann 
Scientists: A. Kopf, T. Feseker, M. Madison, P. Geprägs, M. Vahlenkamp, S. Hammerschmidt 
Date: Thursday, 5 July 2012 
Start at the bottom: 03:13 UTC  33°39.571’E 136°38.071’N 2056 m water depth 
Start ascend:  12:39 UTC  33°39.385’E 136°38.035’N 1978 m water depth 
Total bottom time: 8 hours and 26 minutes 
 

Table 12: Instruments/tools during Dive 320 (GeoB 16753-1). 

GeoB 
Number 

Tool/instrument Start 
(UTC) 

Latitude 
(°N) 

Longitude 
(°E) 

Water 
depth 
(m) 
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16753-2 MTL-stick deployed  07:40 33°39.536 136°38.031 2060 
16753-3 T-stick-1 08:14 33°39.481 136°38.057 2021 
16753-4 Push core 31 08:18 33°39.479 136°38.058 2021 
16753-5 Push core 22 08:21 33°39.477 136°38.057 2021 
16753-6 T-stick-2 08:45 33°39.428 136°38.051 1990 
16753-7 Push core 10 08:48 33°39.429 136°38.022 1989 
16753-8 Push core 5 08:50 33°39.430 136°38.054 1989 
16753-9 T-stick-3 09:17 33°39.391 136°38.057 1977 
16753-

10 
Push core 29 09:23 33°39.391 136°38.057 1977 

16753-
11 

Push core 16 09:27 33°39.395 136°38.061 1977 

16753-
12 

CAT-0, beacon 
recovered 

10:38 33°39.365 136°38.060 1976 

 
Way points: 
MeBoPlug #2 (GeoB16728): 33°39.5409’N 136°38.0153’E, seen at 33°39.535’N  136°38.027’E 
MeBoCORK A (GeoB16737): 33°39.3550’N 136°38.0371’E  
CAT meter #0:  33°39.361’N 136°38.048’E 
CAT meter #5:  33°39.378’N 136°38.056’E  
 
 
Description of the dive 

Mud volcano KK #4 was explored by several gravity cores during the first part of SONNE cruise 222. 

In addition, two MeBo holes were drilled and installed with a plug (Site GeoB16728, MeBoPlug 2 at 

the northern rim of the mud volcano) or a CORK (Site GeoB16711, CORK B on top of the mud 

volcano). During QUEST Dive 320 it was planned to survey the MeBo drill sites as well as two CAT 

meters, which were deployed by the ship’s wire and acoustic releaser systems on top of the mud 

volcano, just before the ROV dive started. In addition, push core sampling accompanied by T-stick 

measurements along a profile from the flank to the top of the mud volcano should become performed. 

 The dive started at the sea floor close to MeBoPlug #2, north of the mud volcano in 2050 m water 

depth, where we first searched for MeBoPlug #2. For several reasons we had problems to find the 

MeBo position in the forward looking sonar and it took quite a while before we found the Mebo Plug 

2. The MSL-stick was deployed close to the borehole instrumentation, which is sticking out of the sea 

floor around 1,5-2 m. It contains a temperature sensor logging the seawater temperature close to the 

sea floor for the next two to three years (see section 5.9 above).  
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Figure 55: Wood fall on the flank of MV #4 associated with chemosynthetic clams and crabs (left). MeBo CORK A 
sticking out of the sea floor several decimeters. The imprint of the square-shaped basis of the Mebo drilling system can be 

seen on the sea floor as well as the round-shaped cast from one of the MeBo’s leg (just behind the CORK). 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 56: Track line of 
ROV Dive 320 on mud 
volcano #4 of the Kumano 
Basin. WP1 – WP3 mark 
T-stick measurements 
with two push core 
operations. 
 
WP1: T-stick-1 (GeoB 
16753-3), push core 31 
(GeoB 16753-4), and push 
core 22 (GeoB 16753-5). 
 
WP2: T-stick-2 (GeoB 
16753-6), push core 10 
(GeoB 16753-7), and push 
core 5 (GeoB 16753-8). 
 
WP3: T-stick-3 (GeoB 
16753-9), push core 29 
(GeoB 16753-10), and 
push core 16 (GeoB 
16753-11). 
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Afterwards, ROV QUEST dove approximately 100 m to the southwest to way point 1 (Fig. 56). Many 

clasts of different colours and sizes have been observed on the sea floor, which seem to have been 

accumulated specifically in the foot region of the mud volcano. Disseminated white shells possible 

from Calytogena-type clams were found in some areas. The open shells are remnants form dead clams 

and are well to see on the darker sea floor. Live clams are very difficult to see because most part of 

the shell is sitting in the sediment. Few clams together with crabs were observed close to wood fall 

deposits (Fig. 55). At way point 1 a T-stick measurement was performed and two push cores (no. 31 

und 22) have been taken (Tab. 12). 

After flying 100 m further to the south the ROV ascent additional 30 m in height and performed the 

same sampling (push cores 10 and 5) and T-stick (T-stick-3) measurement program at way point 2 

(Fig. 56). At way point 3 (Fig. xx), further 60 m to the south, close to the top of the mud volcano, a 

third sequence of push coring (push cores 29 and 16) was performed during a T-stick measurement 

(T-stick-3). After that, ROV QUEST started to search for the different ship-based deployments in the 

topmost region of the elevated feature. 18 minutes later at 09:58 MeBo CORK A (GeoB16737) was 

found and documented by several ROV cameras (Fig. 55). After searching 20 minutes to the east and 

northeast flow meter CAT-0 was found and the beacon was recovered which was mounted on top of 

the flow meter. Signals from both beacons could not be received on the ROV and it was therefore 

more difficult to find the tools on the mud volcano. A strong signal in the sonar guided us to move the 

ROV to the northwest, because we hoped to find flow meter CAT #5. Instead a large bag of tissue 

with unknown content was found. Interestingly living Calyptogena clams are settled close-by and 

several large grabs inhabit the bag itself. It was decided to do another T-stick measurement, which 

failed, because of weather-dependent difficulties of the ROV maneuvering. The T-stick was recovered 

and the ROV had to dive up after weather conditions take a turn for the worse. At 12:40 the ROV 

started to ascend from the seafloor and Dive 320 terminated. 

 
 

6.8.2 Dive 321  (GeoB 16767-1) on Mud volcano #3 
 
Protocol: Gerhard Bohrmann 
Scientists: A. Kopf, T. Fleischmann, T. Feseker, T. Kimura, K. Kitada, K. Asshoff  
Date: Sunday, 8 July 2012 
Start at the bottom: 02:20 UTC  33°38.109’N 136°40.353’E 1959 m water depth 
Start ascend:  13:28 UTC  33°37.954’N 136°40.261’E 1944 m water depth 
Total bottom time: 11 hours and 2 minutes 
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Table 13: Instruments/tools during Dive 321 (GeoB 16766-1). 

GeoB 
Number 

Tool/instrument Start 
(UTC) 

Latitude 
(N) 

Longitude 
(E) 

Water 
depth 
(m) 

16767-2 CAT-8 observed 03:08 33°38.053’ 136°40.268’ 1949 
16767-3 CORK-B + OBE 

connected 
06:18 33°38.023’ 136°40.259’ 1950 

16767-4 MTL-stick deployed 07:39 33°38.034’ 136°40.266’ 1950 
16767-5 T-stick-1 07:52 33°38.033’ 136°40.265’ 1951 
16767-6 T-stick-2 08:57 33°38.006’ 136°40.225’ 1952 
16767-7 Push core 2 09:00 33°38.005’ 135°40.224’ 1952 
16767-8 Push core 15 09:04 33°38.005’ 136°40.226’ 1952 
16767-9 T-stick-3 09:50 33°37.960’ 136°40.185’ 1954 
16767-

10 
Push core 18 09:54 33°37.961’ 136°40.184’ 1954 

16767-
11 

Push core 30 09:59 33°37.960’ 136°40.185’ 1954 

16767-
12 

OBE disconnected 10:30 33°38.008’ 136°40.278’ 1952 

16767-
13 

OBE recovered 12:16 33°38.004’ 136°40.293’ 1950 

 
Way points: 
MeBoPlug #1 (GeoB16709): 33°38.0277’N 136°40.2569’E (Posidonia position from Leg A) 
MeBoCORK B (GeoB16711): 33°38.0140’N 136°40.2719’E (Posidonia position from Leg A) 
CAT meter #8 : 33°38.0350’N 136°40.2866’E (drop position; ship wire) 
OBE: 33°38.0350’N 136°40.2866’E (drop position; ship wire) 
 
 
Description of the dive 
Mud volcano KK #3 was already surveyed in 2000 by Shinkai Dive 588 during cruise YK01-04 

(Kuramoto et al., 2001) because of its prominent back-scatter signal but by a weak morphological 

expression in multibeam data. During this surface observation scattered chemosynthetic clams have 

been found which clearly indicate fluid flow from below. The mud volcano is roughly 60 m higher 

than the surrounding sea floor and has a flat top area of approximately 500 m in diameter. During leg 

SO222A, three MeBo drill sites were performed on this feature, one at the northern rim of the volcano 

(GeoB16732) and two on top of the dome. Both latter drill holes were supplied with long-term 

seafloor installations, one with a plug (MeBoPlug #1; GeoB16709) and the second with a 

MeBoCORK (CORK B; GeoB16711). The purpose for diving with ROV QUEST was to install 

additional instruments and to understand more about the regional fluid flow activities of the mud 

volcano. Therefore a Chemical and Aquaeous Transport (CAT) meter (CAT-8) and the bottom unit 

were deployed on the seafloor by the ship’s wire before the dive started (Fig. 57).  
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Figure 57: CAT meter #8 and the MeBoCORK B bottom unit (left) on the ship’s wire and dummy weight before being 
lowered to the seafloor. The assembly got veered to appx. 50 m above seafloor, and the individual components were 

released close to each other by acoustic release. 
 

ROV QUEST reached the sea floor at the northeastern upper flank of the mud volcano where the dive 

started at 02:20 UTC. Due to an offset in the dive map it took a while before the ROV arrived at the 

dropping location of CAT-meter #8. The sealing of the basic platform from CAT-8 was surveyed by 

turning around the total instrument. Images from all four sides document a good sealing of the 

instrument, so that all fluids below the flow meter will be registered by the system (Fig. 58, upper 

left). 
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Figure 58: CAT meter #8 on mud volcano observed by ROV QUEST after the deployment by the ship’s wire (above left). 
Connecting procedure of the hotstab to the MeBo CORK-B rod by the manipulator arm (above right). View of the 

connected bottom unit to the MeBo CORK-B (below left). Attachment of the lowered wire of the ship by a hook to the 
bottom unit for recovery from the seafloor (below right). 

 
On its way to MeBoCORK B site, ROV QUEST could document mostly dead clams of genus 

Calyptogena and Acharax, which occurred as scattered open shells lying on the surface or as shell 

accumulations in some areas. In some cases living Calyptogena clams sticking out of the sea floor 

have been also seen. Further indications of sea floor seepage was indicated by dark gray patches 

which we interpreted as reduced sediments lifted to the surface by bioirrigation of the clams, by grabs 

eating the chemosynthetic clams or by other biological activities. Close to MeBoCORK B site a 

mega-clast was observed on the seafloor and the dropped bottom unit was found nearby. The 

following transportation of the bottom unit by ROV QUEST was hampered by mud suspension, which 

was released from the base plate of the MeBoCORK B unit. Because of the limited visibility this 

procedure took more than 1,5 hours before the OBE could be placed nearby the MeBo hole. After the 

water became clear ROV QUEST removed the cap from CORK-B and the hotstab connecting the 

CORK-B with the bottom unit was placed in its recepticle in the upper drill rod (Fig. 58, upper right). 

The connecting procedure was finished after the plug was rotated in the locking mechanism. 
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Documentation of the connected tools was performed by video footage and still images (Fig. 58, 

lower left).  

 
During the further dive we searched for the second MeBo drill hole (MeBoPlug #1), which was 

reached just ca. 50 m northwest of former MeBo position. Close to the drill rod the MTL-stick 

(GeoB16767-4) was deployed into the sediment, so that the temperature sensor was placed some cm 

above the seafloor (Figs. 59 and 60). 

 

 

 
 
 
 
 
 

Figure 59: Track line 
of ROV Dive 321 on 
Kumano Basin mud 
volcano #3. WP1 – 
WP2 are marking T-
stick measurements 
with sampling of two 
push cores. 
 
WP1: T-stick-2 
(GeoB 16767-6), push 
core 2 (GeoB 16767-
7), and push core 15 
(GeoB 16767-8). 
 
WP2: T-stick-3 
(GeoB 16767-9), push 
core 18 (GeoB 16767-
10), and push core 30 
(GeoB 16767-11). 
 
OBE = MeBoCORK 
B bottom unit. 

 

 

 
After a T-stick measurement (T-stick 1; GeoB16767) the location was left by moving the ROV to the 

southwest. The undulated sea bed morphology of the broad mud volcano summit did not allow a 

wider look over longer distances. This hilly structure is best documented in the image of the forward-

looking sonar of the ROV (Fig. 60). Beside some exceptions mud volcanic ejecta like some clasts are 

not very often to see. After approximately 70 m survey close to sea floor the ROV landed in an area 

where no clams are seen. Two push cores (GeoB16767-7 and -8) were taken during the T-stick-2 

(GeoB16767-6) measurement was performed. On the way with southwestern heading the ROV 
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stopped again after ca. 80 m distance. A final T-stick measurement (GeoB16767-9) was done and two 

addition push cores were sampled (GeoB16767-10 and -11).  

During these dive activities data from MeBo CORK-B station were already downloaded by an 

acoustic modem and the data quality proved that not all functions of the bottom unit are working 

sufficiently. This lead to the plan to recover the bottom unit in order to check its performance during 

the remainder of the cruise and possibly deploy it again. After a detailed discussion with the master 

and the ship crew of RV SONNE a connecting wire with a hook system was launched with the heavy 

load by the wire of the ship and navigated close to the MeBoCORK B station. The ROV QUEST dove 

to the CORK again and disconnected the bottom unit from the MeBo rod and hooked the ship wire 

with the bottom unit of MeBoCORK B. After the ROV passed away the OBE was heaved from the 

sea floor and reached the deck at 13:27. The further plan to collect large clasts from the mud breccia 

was abandoned after the ROV encountered a hydraulic problem. Therefore the dive was finished after 

more than 11 hours sea floor operation. The ROV started to ascend at 13:28 UTC (Fig. 59). 

  
 

Figure 60: Deployment of MTL-stick close to MeBo Plug 1 (left). Screenshot of the forward-looking sonar Kongsberg 
DT MS1000 showing the hilly morphology in a sector up to 30 m from the ROV of the mud volcano close to MeBoPlug 

#1 (below right). 
 
 
 
6.9. Observatories 

(A. Kopf, S. Hammerschmidt, K. Kitada, T. Kimura, T. Fleischmann) 
 
 

MeBoPlugs and MeBoCORKs 

As already mentioned in sections 6.5 (MeBo deployments, Table 9) and 6.8 (ROV operations), a total 

of four observatories was set with MeBo, and in case of MeBoCORK B assisted by ROV. In general, 

operations were effortlessly carried out, in particular for MeBoPlug #1 and MeBoCORK A. Both 

systems were pre-installed on the uppermost, final drill rod, which was pushed down into the seafloor 
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so that only appx. 70-80 cm stuck out into the water column. Figure 61 illustrates how the situation 

looked like before MeBo took off. 

When installing MeBoPlug #2 at station GeoB16728, we encountered some problems with drilling 

progress when hitting several indurated sand layers at appx. 17 mbsf (Table 9). Despite efforts to 

clean the hole with pressurised fluid, the string did not progress any deeper, so that the only option to 

install MeBoPlug #2 was to crew on the drill pipe with the MeBoPlug and leave it sticking out of the 

seafloor by appx. 2 – 2.5 meters. Despite this fragile pipe representing an obstacle, the MeBo take-off 

went well and the pipe was not bend or damaged.  

 

 
Figure 61: MeBoPlug (left) and MeBoCORK B top hole assembly with black endcap (right) after installation with MeBo. 

Photos were taken iummediately before the seafloor drill rig takes off the ground. See text. 
 
 

The majority of the other installations was also successful, e.g. for the autonomous CORK A (Fig. 55, 

right), the CORK B downhole assembly (Fig. 61, right), the bottom unit and hotstab (Fig. 58), or the 

MeBoPlugs, as sighted by TV-grab (see Fig. 60, left). 
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Figure 62: First data sets from MeBoCORK A as recovered by acoustic data transmission. Pressure curves are blue 
colours, T cirves are red/brown colours. Note the offset in borehole vs. reference pressure, which attests the 

successful deployment of the drop weight into the open hole. 
 
 
The installation of MeBoCORK A at the crest of MV #4 represented no problems, and once the 

MeBo had taken off, we send an acoustic signal to unlatch the drop weight and lower the pore 

pressure tubing into the open bottom end of the otherwise cased drill hole. As can be seen from one of 

the first data sets downloaded from the CORK A via acoustic communication by develogic, the 

borehole pressure shows appx. 18 m higher pressure values than its seafloor counterpart (Fig. 62), 

which is in good agreement with the terminal depth of appx. 19 mbsf at this drill site. 
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Figure 63: Data set covering the connection of MeBoCORK B with ROV Quest. For reasons to be explored, the borehole 

pressure is not any higher than the seafloor reference, suggesting a problem with the hotstab connection. Note that the 
vertical scale is in m * 101 and that the horizontal unit is minutes. 

 
 

At sites GeoB16711 (MeBo) / GeoB16767 (ROV), we had at first no problem untangling the hotstab 

of the seafloor unit of MeBoCORK B, take it to the MeBo drill rod, and plug the hotstab into its 

female counterpart (see section 6.8 above, and also Fig. 58, upper right/lower left). However, there 

was some uncertainty whether the tubing got caught and pinched during this operation, so that we 

unplugged the hotstab again and pushed it back in more safely a second time. The P records of 

seafloor reference and downward-looking (=borehole) P are shown in Figure 63. It can be seen that 

the differential pressures do not change much over the time of installation, which is unexpected given 

that the borehole is 33 mbsf and the drop weight should sit near TD of this hole. The only explanation 

for the P record measured is a leak somewhere inside the upper end of the female hotstab end of the 

drill string; all other sources of error, including the entire bottom unit, umbilical with tubes to hotstab 

and osmo-sampler, as well as the hotstab connector itself, are flawless. 

 

SmartPlug piezometer 

Given the unforeseen problems with the bottom unit of MeBoCORK B, and more so with the ROV 

“Quest 40m”, we had no chance to re-install the bottom unit during leg SO222B. Instead, the 
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SmartPlug was redesigned to become a piezometer and was successfully installed by TV-grab at the 

crest of MV #4 (Station GeoB16789). Figure 64 shows the piezometer strapped to the TV-grab, with 

the releaser (white) right above it. The deployment was visually controlled via the camera system of 

the TV-grab sampler, and the release was activated once the piezometer was vertically stuck into the 

seabottom. When heaving the TV grab again, the SmartPlug instrument was sighted and it could be 

confirmed that the nstallation was successful. The instrument will remain in the seafloor for 2-3 years 

and is likely to be recovered by ROV during the same cruise necessary to recover the MeBoPlugs. 
 

 
Figure 64: SmartPlug piezometer mounted to releaser and TV-grab when going overboard on MV#4. 
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6.10. TV grab 

(T. Pape, A. Kopf, M.Tryon, A. Hüpers, J. Wei, G. Bohrmann, P. Geprägs, M. Belke-Brea) 

 
 
During R/V SONNE cruise SO222, five TV-grab stations were performed (see Table 14) for different 

purposes. Four deployments have been used to survey and sample the sea floor for sediments and 

rocks. In additional, TVG-4 was used to deploy the SmartPlug piezometer (see section 6.9 

observatories, and Fig. 64) on Mud Volcano KK #4. 

 
Table 14: List of TV-grab stations. 
 
Instr.  
No. 

GeoB  
no. 

Area Date/UTC Time Lat. / Long. Depth 
(m) 

Remarks 

TVG 
1 

16713 MV #3 18 Jun - 06:17-
08:28 

33°38.048’N 
136°40.228’E 

1929 Sediment with 
large clast 

TVG 
2 

16744 MV 
#10 

28 Jun – 08:05-
09:21 

 

33°32.937‘N 
136°47.088’E 

1854 No sample 

TVG 
3 

16770 MV #2 9 Jul – 02:56-
03:55 

33°40.516’N 
136°55.157’E 

1965 No sample / 
stopped due to 
TVG problems 

TVG 
4 

16789 MV #4 13 July – 08:13-
08:15 

33°39.384’N 
136°38.043’E 

1977 Deployment of  
SmartPlug 

TVG 
5 

16793 MV #2 14 Jul - 11:10-
12:30 

33°40.542’N 
136°55.279’E 

2000 Seep sampled 

 
 
TV-grab station GeoB 16713 on Mud volcano #3 
 
Protocol: T. Pape 
Scientists: A. Kopf, M. Tryon, A. Hüpers, J. Wei 
Date: Monday, 18 June 2012 
Start at the bottom: 06:11 UTC  33°38.019’N 136°40.251’E 1929 m water depth 
Start ascend:  08:28 UTC  33°38.048’N 136°40.228’E 1930 m water depth 
Total bottom time: 2 hours 17 minutes 
 
Mud volcano KK #3 is around 1300 m in diameter and extends the sea floor nearly 100 m in height. 

The grab reached the sea floor in the northern center of the mud volcano and moved 50 m to the south 

and then approximately 100 m to east. The relative smooth seafloor and scattered mud clasts and dead 

clam shells were to see (Fig. 65, right). The density of the shells increased and MeBo Station 

GeoB16709 was seen and identified with the plug on top of the rod (MeBoPlug #1; see Fig. 65, left). 

Moving to the second Mebo station the topography became rougher. The TV-grab passed again the 

MeBoPlug #1 site. At 08:23 the grab was deployed over a large clast. The closing mechanisms of the 
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grab failed and a second attempt was necessary. The sample which come on deck contained many 

clasts which were stored for clasts analyses in the laboratory. 

 

  
 

Figure 65: Frame grabs taken from the video of TV-grab-1 (GeoB16767-1). TV-grab passing MeBo station Plug 1 (left). 
Open clam shells from genus Acharax are lying on top of the sediment surface. Scale of weight lowered by the robe 

measures 20 cm in longitudinal axis. 
 
 
TV-grab station GeoB16744 on Mud volcano #10 
 
Protocol: T. Pape 
Scientists: A. Kopf, M. Tryon, T. Pape, M. Lange 
Date: Monday, 28 June 2012 
Start at the bottom: 08:05 UTC  33°32.830’N 136°16.783’E 1846 m water depth 
Start ascend:  09:21 UTC  33°32.937’N 136°47.088’E 1854 m water depth 
Total bottom time: 1 hour 16 minutes 
 
 
Mud volcano KK #10 has a diameter of 1100-1300 m is around 90 m in height. It was sampled by 

gravity cores and contained hydrate at least in core the catcher. The TV-grab started already on top of 

the volcano. No characteristic animals or clasts have been seen. After half an hour scattered clams 

were observed and later on large clasts have been found. On purpose was to check the Mebo drilling 

position on mud volcano 10. However, this goal was not reached. In the end the TV-grab was not 

deployed and was retrieved empty back to the ship’s deck. 

 
 
TV-grab station GeoB 16793 on Mud volcano #2 
 
Protocol: Gerhard Bohrmann 
Scientists: P. Geprägs, M. Belke-Brea 
Date: Saturday, 14 July 2012 
Start at the bottom: 11:10 UTC  33°40.567’N 136°55.420’E 2000 m water depth 
Start ascend:  12:30 UTC  33°40.542’N 136°55.279’E 2000 m water depth 
Total bottom time: 1 hour 20 minutes 
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Mud volcano #2 is around 700-800 m in diameter and extends the seafloor in 2010 m water depth 

only 10-15 m in height. Small differences in topography are not able to be recorded by the multibeam 

EM 120 of the ship, however, the mud volcano seems to have an undulated sea floor morphology 

including a more or less flat part in the center of the mud volcano. Several gravity cores taken during 

the cruise SO222 have shown that disseminated gas hydrates are present in the sediments of the mud 

volcano, which might be an indication for elevated fluid and gas discharge. Sampling an active seep 

site or an area containing visibly containing mud clasts were the goals of this TV-grab deployment.   

We started the sea floor track of TVG in the eastern area of the mud volcano and moved slowly to the 

west using a heading of 270°.  After 500 m we moved around 40 m to the south and then parallel to 

first track back to the east (Fig. 66). The first bottom sight showed a soft sediment covered sea floor 

with scattered single clam shells very few sea stars, seldom grabs, and other benthic animals which 

often could not be identified precisely enough. 

 

 

Figure 66: Track and sampling station of TVG-5 (GeoB16793) on the sea floor of mud volcano #2. 

 
 

Only a few single clasts have been observed during the sea floor track. Coming to the center at around 

11:34 we recognised more clams and traces of clam tracks (Fig. 67) as well as more fishes and often 

some small patches showing a lighter sediment color. On the southern track close to the same 

longitude the denser colonization by clams became more evident, and when we saw a dense field of 

Calyptogena clams  (Fig. 67) at around 12:21 we deployed the grab directly into the clam field and 

closed the shovels. After the grab was retrieved to surface 2 tubes for pore water analyses were 

pushed from surface of the grab down into sediment. We collected mud clasts and the clam shells. Six 

Calytogena clams of around 12-15 cm length together with one Acharax clam (Fig. 68) were sampled 
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alive and were frozen in liquid nitrogen. More than 200 dead shells in many different sizes (Fig. 68) 

have been sampled from the TV-grab and were stored for detailed determination at home.  
 

  

Figure 67: Frame grabs taken from the video of TV-grab-5 (GeoB16793). Traces on the sea floor caused by travelling 
clams outside of distinct seep sites (left). TV-grab view on a cold seep site, which is characterized by chemosynthetic 

clams. The field was sampled by the TV-grab just 15 seconds after this video image was taken. Scale of weight lowered 
by the robe measures 20 cm in longitudinal axis.	
  

 
 
In addition to the clams, approximately  30 mud clasts, dark grey with diameters between 2-5 cm, 

were recovered from the grab as well. Similar to those in the earlier TVG-1 and from gravity and 

MeBo cores, the clast lithologies span over a wide range on grain sizes (mostly clay- and mudstones, 

but also fine sandstones) and different degrees of induration. The harder examples are most likely 

originating from the deeper portion of the Kumano basin sequence, or even the underlying accreted 

strata. Shore-based analyses including semi-quantitative XRD, illite crystallinity, and vitrinite 

reflectance. 

 
	
  

  

	
  
Figure 68: Clams recovered from the TVG-#5 (GeoB16793). Dead shells of Calyptogena (left); 

6 Calyptogena clams and one Acharax have been alive (right). 
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9.1 Station list 
 

  

Station_list_SO222.xlsx

Seite 1

GeoB%station Campaign Area Device Date Time Latitude Longitude

GeoB16701)1 SO,222,A CTD 14.06.12 07:32 33°38.309 136°30.699
GeoB16701)2 SO,222,A Calibration 14.06.12 09:40 33°38.5 136°30.39
GeoB16702)1 SO,222,A MV#3,and,MV#5 Parasound 14.06.12 12:58 33°38.28 136°30.68
GeoB16703)1 SO,222,A MV#3,crest GC,6,m 14.06.12 21:14 33°37.9900 136°40.2187
GeoB16303)2 SO,222,A MV#3 Calibration 14.06.12 23:06 33°37.968 136°40.249
GeoB16704)1 SO,222,A MV#3,N)E,base,wedge GC,6,m 15.06.12 04:47 33°38.225 136°40.469
GeoB16705)1 SO,222,A MV#3 HF 15.06.12 07:37 33°37.836 136°39.876
GeoB16706)1 SO,222,A MV,#6,,MV,#8,and,MV,#9 Parasound 15.06.12 15:24 33°36.95 136°38.96
GeoB16707)1 SO,222,A MV,#8,crest GC,6,m 15.06.12 21:57 33°36.272 136°33.363
GeoB16708)1 SO,222,A Japan,Kumano,Basin GC,6,m 16.06.12 00:42 33°37.989 136°33.439
GeoB16709)1 SO,222,A MV,#3 MeBo 16.07.12 04:06 33°38.039 136°40.244
GeoB16710)1 SO,222,A MV,#3,MeBo,Location CPT 17.06.12 05:30 33°38.09 136°40.244
GeoB16710)2 SO,222,A MV,#3,MeBo,Location CPT 17.06.12 07:18 33°37.948 136°40.151
GeoB16710)3 SO,222,A MV,#3,MeBo,Location CPT 17.06.12 07:54 33°37.850 136°40.063
GeoB16710)4 SO,222,A MV,#3,MeBo,Location CPT 17.06.12 08:41 33°37.855 136°39.968
GeoB16711)1 SO,222,A MV,#3 MeBo 17.06.12 10:50 33°38.03 136°40.28
GeoB16712)1 SO,222,A MV,#3,crest GC,6,m 18.06.12 05:09 33°38.039 136°40.244
GeoB16713)1 SO,222,A MV,#3,crest TV)grab 18.06.12 15:41 33°38.039 136°40.244
GeoB16714)1 SO,222,A Parasound 18.06.12 11:09 33°35.697 136°38.374
GeoB16715)1 SO,222,A MV,#10 Parasound 20.06.12 22:10 33°48.00 136°40.00
GeoB16716)1 SO,222,A MV,#10,crest GC,6,m 21.06.12 02:07 33°32.824 136°16.880
GeoB16716)2 SO,222,A MV,#10,crest GC,6,m 21.06.12 04:06 33°32.824 136°16.880
GeoB16717)1 SO,222,A GC,6,m 21.06.12 06:02 33°32.90 136°16.96
GeoB16718)1 SO,222,A KK,#10 HF 21.06.12 08:00 33°32.606 136°17.015
GeoB16719)1 SO,222,A Parasound 21.06.12 14:30 33°33.01 136°17.06
GeoB16720)1 SO,222,A MV,#8,, GC,6,m 22.06.12 07:20 33°36.144 136°33.453
GeoB16721)1 SO,222,A MV,#9 GC,6,m 22.06.12 09:25 33°37.926 136°33.519
GeoB16722)1 SO,222,A MV,#4 GC,6,m 22.06.12 11:47 33°39.374 136°38.011
GeoB16722)2 SO,222,A MV,#4 GC,6,m 22.06.12 13:30 33°39.428 136°37.988
GeoB16723)5 SO,222,A MV,#4,N)flank GC,6,m 22.06.12 15:35 33°39.503 136°38.017
GeoB16724)1 SO,222,A MV,#4 HF 22.06.12 17:40 33°39.538 136°38.016
GeoB16725)1 SO,222,A MV,#4 GC,6,m 23.06.12 00:00 33°39.328 136°38.051
GeoB16726)8 SO,222,A MV,#4,N)flank GC,6,m 23.06.12 01:58 33°39.538 136°38.033
GeoB16727)1 SO,222,A MV,#4,ridge GC,6,m 23.06.12 04:05 33°40.212 136°38.584
GeoB16728)1 SO,222,A MV,#4 MeBo 23.06.12 05:51 33°39.56 136°38.04
GeoB16729)11 SO,222,A MV#4,mud,ridge GC,6,m 24.06.12 00:32 33°40.109 136°38.574
GeoB16730)1 SO,222,A MV#4,crest CPT 24.06.12 02:14 33°39.379 136°38.012
GeoB16731)1 SO,222,A MV,#3,NE GC,6m 24.06.12 07:09 33°38.236 136°40.525
GeoB16732)1 SO,222,A MV,#3,NE MeBo 24.06.12 09:17 33°38.20 136°40.48
GeoB16733)1 SO,222,A MV,#9 HF 25.06.12 20:05 33°38.188 136°33.284
GeoB16734)1 SO,222,A MV,#9 GC,6,m 26.06.12 02:12 33°38.157 136°33.456
GeoB16735)1 SO,222,A MV,#3 GC,6,m 26.06.12 05:04 33°38.242 136°40.437
GeoB16736)1 SO,222,A MV,#4,crest GC,6,m 26.06.12 07:21 33°39.348 136°38.024
GeoB16736)2 SO,222,A MV,#4,crest GC,6,m 26.06.12 09:13 33°39.351 136°38.008
GeoB16737)1 SO,222,A MV,#4,top MeBo 26.06.12 11:04 33°39.350 136°38.040
GeoB16738)1 SO,222,A MV,buried GC,6,m 27.06.12 02:38 33°37.155 136°22.829
GeoB16739)1 SO,222,A MV,buried GC,6,m 27.06.12 04:36 33°36.777 136°22.183
GeoB16740)1 SO,222,A MV,#10,top GC,6,m 27.06.12 06:58 33°32.853 136°16.986
GeoB16741)1 SO,222,A MV,#10,top MeBo 27.06.12 09:17 33°32.870 136°16.91
GeoB16742)1 SO,222,A MV,#10,E,crest GC,6,m 27.06.12 22:35 33°32.917 136°17.025
GeoB16743)1 SO,222,A MV,#10 GC,6,m 28.06.12 00:30 33°32.866 136°16.883
GeoB16744)1 SO,222,A MV,#10,top TV)grab 28.06.12 04:30 33°32.869 136°16.956
GeoB16745)1 SO,222,A Western,MV)area HF 28.06.12 13:14 33°34.330 136°33.25
GeoB16746)1 SO,222,A MV,#5,top GC,6,m 29.06.12 01:26 33°40.593 136°34.002
GeoB16747)5 SO,222,A MV,#5,top GC,6,m 29.06.12 03:14 33°40.673 136°34.015
GeoB16748)1 SO,222,A MV,#5,top,W GC,6,m 29.06.12 04:59 33°40.492 136°33.916
GeoB16749)1 SO,222,A MV,#6,caldera GC,6,m 29.06.12 06:50 33°41.037 136°33.669
GeoB16750)1 SO,222,A MV,#6,caldera GC,6,m 29.06.12 08:20 33°41.093 136°33.571
GeoB16751)1 SO,222,A MV,#7 GC,6,m 29.06.12 10:19 33°44.127 136°34.046
GeoB16752)1 SO,222,A Easter,MV,area HF 04.07.12 09:10 33°42.700 136°37.863
GeoB16753)1 SO,222,A MV,#4,top ROV 05.07.12 01:00 33°39.517 136°37.990
GeoB16754)2 SO,222,A MV,#4,N)flank GC,6,m 05.07.12 14:59 33°39.489 136°38.038
GeoB16755)1 SO,222,A Parasound 05.07.12 17:18 33°39.62 136°38.14
GeoB16756)1 SO,222,A MV,#11,NE,top GC,6,m 05.07.12 23:41 33°23.272 136°42.431
GeoB16757)1 SO,222,A MV,#11,top GC,6,m 06.07.12 02:39 33°23.292 136°42.389
GeoB16758)2 SO,222,A Background GC,6,m 06.07.12 05:44 33°28.113 136°39.978
GeoB16759)3 SO,222,A MV,#12 GC,6,m 06.07.12 07:42 33°31.326 136°39.885
GeoB16760)1 SO,222,A HF 06.07.12 11:33 33°25.280 136°41.943
GeoB16761)1 SO,222,A Parasound 06.07.12 17:33 33°21.78 136°40.97
GeoB16762)6 SO,222,A MV,#12 GC,6,m 06.07.12 23:54 33°31.337 136°39.882
GeoB16763)1 SO,222,A GC,6,m 07.07.12 04:05 33°39.995 136°53.012
GeoB16764)1 SO,222,A MV,#2 GC,6,m 07.07.12 06:15 33°40.548 136°55.334
GeoB16765)1 SO,222,A Parasound 07.07.12 11:30 33°44.517 136°44.548
GeoB16766)1 SO,222,A HF 07.07.12 15:44 33°39.338 136°40.907
GeoB16767)1 SO,222,A MV,#3 ROV 08.07.12 00:34 33°38.026 136°40.351
GeoB16768)1 SO,222,A MV,#4 ROV 08.07.12 11:20 33°38.02 136°40.28
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GeoB16769)1 SO,222,A MV,#3,to,MV,#2 HF 08.07.12 16:55 33°38.351 136°30.649
GeoB16770)1 SO,222,A MV,#2 TV)grab 09.07.12 02:16 33°40.553 136°55.225
GeoB16771)1 SO,222,A MV,#2 GC,6,m 09.07.12 05:17 33°40.496 136°55.409
GeoB16772)1 SO,222,A MV,#2 GC,6,m 09.07.12 07:40 33°40.518 136°55.195
GeoB16773)1 SO,222,A MV,#2 CPT, 09.07.12 10:17 33°40.649 136°55.214
GeoB16774)1 SO,222,A MV,#2 HF 09.07.12 14:56 33°40.793 136°56.247
GeoB16775)1 SO,222,A MV,#2 ROV 10.07.12 00:24 33°40.57 136°55.45
GeoB16776)1 SO,222,A MV,#2 CAT,meter 10.07.12 02:28 33°40.582 136°55.318
GeoB16777)1 SO,222,A MV,#2 CPT 10.07.12 05:00 33°40.65 136°55.20
GeoB16778)1 SO,222,A Parasound 10.07.12 07:13 33°40.63 136°55.19
GeoB16778)2 SO,222,A HF 10.07.12 10:06 33°39.273 136°46.283
GeoB16779)1 SO,222,A CTD 11.07.12 10:00 33°39.37 136°38.05
GeoB16780)1 SO,222,A MV,#13 GC,6,m 11.07.12 03:30 33°46.115 136°54.886
GeoB16781)1 SO,222,A MV,#13 GC,6,m 11.07.12 05:10 33°46.105 136°54.865
GeoB16782)1 SO,222,A MV,#13 GC,6,m 11.07.12 06:43 33°46.100 136°54.775
GeoB16782)2 SO,222,A MV,#14 GC,6,m 12.07.12 08:06 33°46.118 136°54.769
GeoB16783)1 SO,222,A MV,#13 Parasound
GeoB16784)1 SO,222,A MV,#13,top HF 11.07.12 10:50 33°46.718 136°54.831
GeoB16785)1 SO,222,A MV,#3,top CAT,meter 12.07.12 01:14 33°38.014 136°40.25
GeoB16785)2 SO,222,A MV,#3,top GC,6,m 12.07.12 06:17 33°38.213 136°40.427
GeoB16786)1 SO,222,A Kumano,Basin Parasound 12.07.12 07:37 33°38.02 136°40.29
GeoB16787)1 SO,222,A MV,#4,top ROV 12.07.12 06:14 33°39.37 136°37.97
GeoB16788)1 SO,222,A MV,#2 GC,6,m 13.07.12 02:00 33°40.515 136°55.335
GeoB16788)2 SO,222,A MV,#2 GC,6,m 14.07.12 03:44 33°40.525 136°55.264
GeoB16789)1 SO,222,A MV,4,top TV)grab,/,Smart,Plug 13.07.12 07:10 33°39.384 136°38.043
GeoB16790)1 SO,222,A Kumano,Basin HF 13.07.12 13:00 33°35.341 136°26.245
GeoB16791)1 SO,222,A MV,#14 HF 14.07.12 02:00 33°40.665 136°25.128
GeoB16791)2 SO,222,A MV,#14 GC,6,m 14.07.12 03:50 33°40.66 136°25.13
GeoB16792)1 SO,222,A Northern,ridge HF 14.07.12 06:02 33°40.504 136°26.966
GeoB16793)1 SO,222,A MV,#2 TV)grab 14.07.12 11:10 33°40.57 136°55.426
GeoB16794)1 SO,222,A Kumano,Basin HF 14.07.12 17:23 33°26.502 136°58.522
GeoB16795)1 SO,222,A Kumano,Basin Parasound 15.07.12 07:11 33°11.01 136°24.18
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9.2 Lithologs and shear strength data 

 

9.3 Core photographs and MSCL 

 

9.4 Weekly reports to PtJ / BMBF (in German) 
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