Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N

M. SARNTHEIN, S. VAN KREVELD, H. ERLENKEUSER, P. M. GROOTES, M. KUCERA, U. PFLAUMANN AND M. SCHULZ

On the basis of relative isotope temperature stability on the Greenland summit, the Holocene climate is considered to be fairly stable on centennial and longer time scales compared to glacial climates, which underwent extreme temperature changes within decades along with the 1500-year Dansgaard Oeschger (DO) cycles (Dansgaard et al. 1993; Grootes & Stuiver 1997), as long as sea level was lowered by more than 45 m (Schulz et al. 1999).

Nevertheless, significant climatic variations also occurred during most of the Holocene. In the North Atlantic realm, climatic variations are recorded by glacier advances and tree-line changes in Scandinavia (e.g. Karlén 1993; Dahl & Nesje 1996; summary in Huntley et al. 2002) and in the Alps (Patzelt 1999), as well as by fluctuations in lake level and net precipitation in Sweden (Harrison & Digerfeldt 1993; Digerfeldt 1998). In particular, sea surface temperatures (SST) varied by up to 4°C in the Norwegian–Greenland Sea and North Atlantic (Koç et al. 1993; E. Jansen, pers. comm. 2001 on sediment record MD95-2011), likewise subsurface penetrations of Atlantic water into the Arctic Ocean (Duplessy et al. 2001; Hald et al. 1999; Lubinski et al. 1996, 2001). The isotopic and chemical signatures in the Greenland ice and at the Greenland margin show analogous fluctuations over the Holocene, although at much lower amplitudes (Willemse & Törnquist 1999; Mayewski et al. 1997; Grootes & Stuiver 1997; Schulz & Paul 2002).

Moreover, evidence is ever increasing that millennial-scale cyclicities also persisted during Holocene times, although with generally weaker amplitudes than during glacial times and with the dominant periods still under discussion. Denton & Stuiver (1969) first noted glaciers in northeastern Canada, which fluctuated at 2–3 kyr intervals. Bond et al. (1997, 1999) reported cycles in ice-rafting and SST, averaging 1000–2000 years over the entire Holocene, but only 600–1000 years in the early Holocene (Bond et al. 1997: fig. 2). Bianchi & McCave (1999) even inferred actual 1500-year D0-style fluctuations in the strength of the flow of North Atlantic Deep Water (NADW). On the other hand, Schulz & Paul (2002) extracted a highly significant and dominant but non-stationary 890-year periodicity from the Holocene GISP2 d18O (temperature) signal, a period which they ascribe to an internal oscillation of North Atlantic thermohaline circulation (THC). Similar frequencies were deduced for Holocene glacial advances in the Alps (Patzelt 1999) and for Δ13C and 10Be variations as measured in tree rings and GISP2, respectively (Friedrich et al. 1999; Bond et al. 2001). These data also serve as support for direct solar forcing.

The high-latitude Norwegian Sea and Barents shelf may play an important role in intensifying and documenting the climate signals linked to any forcing, since they occupy a key position in the global system of THC. On the floor of the Barents shelf, near to the polar front, abundant dense winter water is formed by brine-
water rejection in the course of seasonal sea-ice production (Backhaus et al. 1997; Rumohr et al. 2001). This dense water cascades downslope into the Arctic and Nordic Seas, where it contributes to the formation of bottom water, thus intensifying the Atlantic THC. Furthermore, both major fall/winter storms and the cascades of winter water stir up great sediment plumes on the shelf and upper slope. These sediments are carried far downslope in the nepheloid layer and accumulate along the continental apron (Blaume 1992). The outlined mechanism is expected to provide a clear and high-resolution sediment record of past variations in storminess and sea-ice formation near the polar front.

In this article we document long- and short-term changes in ocean climate in the northeastern Norwegian Sea over the past 11.6 kyr; in particular, we infer changes in poleward heat flux in the West Spitsbergen Current at 75°N, on the basis of a sediment record with decadal-to-multidecadal resolution. Special attention is paid to centennial-to-millennial-scale changes in storminess and the extent of sea-ice formation near the polar front. Both processes are expected to provide a sediment signal essentially different from that produced by the plankton inhabiting the warm West Spitsbergen Current.

Material and methods

Kasten core 23258-2 (75°N, 14°E; 1768 m water depth) was retrieved from the northeastern Norwegian Sea at the lower Barents continental slope (Fig. 1) during METEOR cruise 7/2 in 1988 (Hirschleber et al. 1988). The continuous and turbidite-free, hemipelagic sediment section between 25 and 415 cm was continuously sampled every single centimetre. Since the top 25-cm section in core 23258-2 was lost by flowing out, we assembled a complete core top section by splicing in the 40-cm-long sediment profile of neighbour (spade) box core 23258-3 (Fig. 2 top; 14 cm in box core 23258-3 is approximately equivalent to 25 cm in kasten core 23258-2).

The samples were weighed, freeze-dried, reweighed, wet-sieved through a 63-μm mesh screen and then dry-sieved at 150 μm. The fraction >150 μm was repeatedly split until enough specimens remained to identify and count between 400 and 1000 specimens of planktic foraminifera and the proportion of lithic grains. The high specimen numbers served to cope with the statistical problem of almost monospecific samples from subpolar and polar regions, where Neogloboquadrina pachyderma (sin.) accounts for up to 90–100% of the total planktic fauna.

Stable O and C isotopes were analysed on samples of >30 tests of N. pachyderma (sin.), 150–250 μm, and 1–10 specimens of the epibenthic species Cibicidoides wuellerstorfi (300–415 μm, few samples 250–415 μm). The tests were treated with 99.8% ethanol, cracked and treated with ultrasound in deionized water. The samples were converted to CO2 with H3PO4 in the automated Carbo-Kiel preparation line. The released CO2 gas was measured online using a Finnigan MAT-251 mass spectrometer at the Leibniz Laboratory of the University of Kiel. The analytical precision of the internal carbonate standard (Solnhofen Limestone), which was run every 10 samples, was 0.07‰ for δ18O and 0.05‰ for δ13C. The isotope values were calibrated to the Pee Dee Belemnite (PDB) scale using NBS 20.

Seasonal SST variations at 10-m water depth were estimated from planktic foraminifera census counts using the SIMMAX transfer function (Pflaumann et al. 1996 and in press), which is based on a maximum similarity index of species assemblages in the 10 best analogues combined with geographical distance weighting between analogue samples. This method is most suited for reconstructing SST of the polar 23258 site because of its extensive database of 947 modern analogues including considerable data from high latitudes (Pflaumann et al. in press). Accordingly, the estimates of summer SST between 3°C and 8°C can be well reproduced within 0.9°C, and the bias by no-analogue cases is minor ($r^2 = 0.994$ for measured versus estimated SST). Nevertheless, SIMMAX-based estimates below 2°–3°C tend to be $1°$–$3.5°C$ overestimations of actual SST, implying a unilateral bias for cold SST extremes. Overestimation of winter temperatures near the cold end, i.e. near the freezing point, does not exceed $1.5°C$.

In order to assess the reliability of the SIMMAX-based SST reconstructions, we used the Artificial
Fig. 2. Planktic and benthic stable isotope records, sediment and grain size composition in spliced cores 23258-2 and -3 (open dots mark records of box core -3) from 0 to 415 cm composite depth below sea floor. $\delta^{18}O$ record of *C. wuellerstorfi* in core -3 is corrected for $\delta^{13}C$ to account for a systematic analytical offset. Scales of both the grain size record $>63 \mu m$ in top 280 cm core depth (solid line and open-dot line) and the proportion of lithic grains $>150 \mu m$ in top 235 cm core depth (dotted line) are enlarged (left-hand scales).
Neural Network (ANN) technique (Malmgren et al. 2001), which is based on an algorithm that simulates autonomous learning. Its utility for SST reconstructions has been demonstrated by Malmgren & Nordlund (1997) and Malmgren et al. (2001), who also showed that ANN SST reconstructions are independent of SIMMAX. In this study, we developed a new set of ANNs trained on the same 947-sample database with the same summer and winter SST (10 m) definitions as the SIMMAX technique described above. The training followed the procedures outlined in Malmgren et al. (2001). We used the Biocomp NGO 2.6 software (maximum of 2 hidden layers with up to 32 neurons; training stopped after 2500 learning epochs or if no improvement occurred after 40 epochs; optimization based on 30 generations with population size of 100; 20% of samples used for test set; fitness based 80% on test set, 20% on training set).

A proxy to produce conservative estimates of the maximum extent of sea ice cover (with >50% sea ice density) in the Nordic Seas was derived from 150 core-top samples (Sarntthein et al. in press). They show that SIMMAX-based SST of >2.5°C characterize ice-free conditions during summer, while SST of >0.75°C characterize ice-free conditions during a Little Ice Age- (LIA-) style winter. This approach holds true for almost 100% of all sites seaward of the modern/LIA sea ice margin. On the other hand, many sites seaward of the sea ice also produce SST estimates that are lower than the chosen threshold values. Accordingly, this new SST-based sea ice proxy can only reconstruct the largest possible extent of sea ice in the past. The actual sea ice cover (with an ice density of >50%) was probably more reduced than our reconstructions show.

Twenty-two samples were 14C dated by accelerator mass spectrometry (AMS; Table 1) at the Kiel Leibniz Laboratory (methods in Nadeau et al. 1997). Seventeen samples consisted of 623–2668 specimens of N. pachyderma of which 30% consisted of low specimen numbers to minimize the bias of bioturbation. Three samples consisted of high specimen numbers (4.3–13.5 mg), picked on relative abundance highs and peaks of this species to minimize the bias of bioturbation. Reason for replacing and/or ignoring certain age estimates are given in the discussion section.

Strong and frequent variations in the sediment composition were studied using the spectral analysis program REDFIT (Schulz & Mudelsee 2002), which analyses unevenly spaced time series without prior interpolation.

All data are deposited in the PANGAEA data bank www.pangaea.de.

Results

Oxygen isotope values of N. pachyderma (sin.) vary from 2.2‰ to 4.0‰, while carbon isotope values fluctuate from 0.9‰ to 0.4‰ in core 23258 from the northeastern Norwegian Sea (Fig. 2). From 415–325 cm high δ18O values of 4.05–3.7‰ precede an abrupt 0.7‰ decrease at 325–318 cm ascribed to the top of the Younger Dryas. Here the planktic δ13C values show a marked excursion from approximately 0.1‰ to 0.5‰ at 330–312 cm, interpreted as ventilation pulse. From 200 cm to 100 cm depth there follows a gradual δ13C rise and from 70–50 cm depth a final δ13C decrease to the present 0.3‰ level.

Epibenthic C. wuellerstorfi is absent below 305 cm, that is below the planktic δ18O jump at 318–327 cm marking the top of the Younger Dryas (Fig. 2). Further, from 305–220 cm, that is within the earliest Holocene, the δ18O values of C. wuellerstorfi remain near 4.0–4.2‰. This level is still characteristic of the Younger Dryas as uniformly recorded in single-grain isotope data obtained from various cores from similar water depths in the Nordic Seas (Vogelsang 1990; Voelker 1999). In the top 220 cm section the values gradually decrease to 3.5‰, 100 cm above the planktic δ18O shift. Benthic δ13C values also change from a low average of 0.6–0.8‰ at more than 230 cm to high values of 1.1–1.4‰ in the top 150 cm depth, which are characteristic of the modern deep water formed in the Nordic Seas (Weinelt et al. 2001).

The coarse fraction >63 μm in the bulk sediment varies from 0% to 22%. There is a series of distinct peaks, however, that do not exceed 3% in the top 280 cm of the core (Fig. 2). Most match the maxima in planktic and benthic foraminifera concentrations.

In the coarse fraction, lithic grains consist mostly of colourless, transparent quartz and sediment clasts, with moderate to low amounts of hematite-stained quartz, feldspar (occasionally hematite-coated), brown glass, volcanic rock fragments, crystalline grains and detrital carbonate. The lithic grain concentration varies from 0 to 1615 grains >150 μm per gram dry sediment, with a broad maximum during the (cold) interval 415–310 cm. Concentrations are low from 280–80 cm, but increase slightly from 80 cm to the top, in parallel with the coarse fraction >63 μm and with decreasing planktic δ13C values (Fig. 2).

The planktic foraminifera fauna in core 23258-2 consists of polar, subpolar and cosmopolitan species (Fig. 3), today also identified in nearby sediment traps (Jensen 1998). The fauna is dominated by the polar N. pachyderma (sin.) (100–16%) and the subpolar Turbo-rotalita quinqueloba (65–0%). The subpolar species N. pachyderma (dex.) and Globigerina bulloides vary from 23% to 0% and from 17% to 0%, respectively. The cosmopolitan Globorinidae glutinata varies from 1% to 0%. The concentrations of planktic and benthic foraminifera oscillate between 0 and 920 and 0 and 145
Fig. 3. Composition of planktic foraminifera assemblage, SIMMAX- and ANN-based sea surface temperature records for winter and summer, with ^14C datings on right coiled (d) and left coiled (no specification) specimens of *N. pachyderma* (Table 1); age-depth plot (full dots are outlier dates of *N. pachyderma* sinistral and dextral, not used in the age model) and sedimentation rates in core 23258-2 versus planktic ^18O record.
Table 1. \(^{14}C\) dates and other age control points in sediment core 23258/2 and 3.

<table>
<thead>
<tr>
<th>Lab. no.</th>
<th>Core</th>
<th>Depth (cm)</th>
<th>N. pachydermaAMS (^{14}C) age (00 yr res. corr.)</th>
<th>1 error (+/− years)</th>
<th>cal. age BP (years)</th>
<th>Time res. at 1-cm sampling (years)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIA9191</td>
<td>Box core 23258-3</td>
<td>17 Sinistral</td>
<td>780</td>
<td>35</td>
<td>712</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>KIA9192</td>
<td>Box core 23258-3</td>
<td>36 Sinistral</td>
<td>1785</td>
<td>30</td>
<td>1781</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>KIA7648</td>
<td>Kasten core 23258-2</td>
<td>25 Sinistral</td>
<td>765</td>
<td>35</td>
<td>698</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>KIA7649</td>
<td>23258-3</td>
<td>36 Sinistral</td>
<td>2155</td>
<td>35</td>
<td>2244</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>KIA7650</td>
<td>23258-3</td>
<td>51 Sinistral</td>
<td>3376</td>
<td>35</td>
<td>3576</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>KIA7651</td>
<td>23258-3</td>
<td>67 Sinistral</td>
<td>8610</td>
<td>35</td>
<td>8760</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>KIA11534</td>
<td>23258-2</td>
<td>118 Dextral</td>
<td>5740</td>
<td>70</td>
<td>6567</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>KIA7653</td>
<td>23258-2</td>
<td>154 Sinistral</td>
<td>7260</td>
<td>45</td>
<td>8106</td>
<td>43</td>
<td>56</td>
</tr>
<tr>
<td>KIA7654</td>
<td>23258-2</td>
<td>177 Sinistral</td>
<td>7980</td>
<td>45</td>
<td>8892</td>
<td>34</td>
<td>56</td>
</tr>
<tr>
<td>KIA7655</td>
<td>23258-2</td>
<td>200 Sinistral</td>
<td>8360</td>
<td>40</td>
<td>9271</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>KIA9353</td>
<td>23258-2</td>
<td>249 Sinistral</td>
<td>8555</td>
<td>55</td>
<td>9570</td>
<td>20</td>
<td>56</td>
</tr>
<tr>
<td>KIA8553</td>
<td>23258-2</td>
<td>249 Sinistral</td>
<td>8835</td>
<td>50</td>
<td>9937</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>KIA9354</td>
<td>23258-2</td>
<td>250 Sinistral</td>
<td>9035</td>
<td>55</td>
<td>10155</td>
<td>22</td>
<td>56</td>
</tr>
</tbody>
</table>

Average of \(^{14}C\) ages at 249 and 250 cm depth:

KIA7657 | 23258-2 | 315 Sinistral | 10080 | 45 | 11000 | 22 | 56 |

KIA7658 | 23258-2 | 340 Sinistral | 10610 | 45 | 11530 | 22 | 56 |

KIA7659 | 23258-2 | 345 Sinistral | 10990 | 45 | 11911 | 22 | 56 |

Two datings averaged at 249.5 cm depth:

KIA9193 | 23258-3 | 194 Sinistral | 7960 | 45 | 8887 | 22 | 56 |

KIA7656 | 23258-2 | 206 Sinistral | 7400 | 40 | 8264 | 12 | 56 |

KIA8554 | 23258-2 | 249 Sinistral | 8710 | 50 | 9742 | 10 | 56 |

KIA9354 | 23258-2 | 250 Sinistral | 8710 | 50 | 9742 | 10 | 56 |

KIA7655 | 23258-2 | 206 Sinistral | 7400 | 40 | 8264 | 12 | 56 |

KIA11536 | 23258-2 | 237 Dextral | 8600 | 70 | 9630 | 10 | 56 |

KIA7656 | 23258-2 | 237 Sinistral | 6740 | 50 | 7607 | 10 | 56 |

Datings not used in age model (see black dots in Fig. 3):

KIA9193 | 23258-3 | 194 Sinistral | 7960 | 45 | 8887 | 22 | 56 |

KIA7657 | 23258-2 | 315 Sinistral | 10080 | 45 | 11000 | 22 | 56 |

KIA7658 | 23258-2 | 340 Sinistral | 10610 | 45 | 11530 | 22 | 56 |

KIA7659 | 23258-2 | 345 Sinistral | 10990 | 45 | 11911 | 22 | 56 |

Age correlated to GISP2 age of the Younger Dryas:

KIA7658 | 23258-2 | 315 Sinistral | 11610 | 45 | 12530 | 22 | 56 |

KIA7659 | 23258-2 | 340 Sinistral | 11900 | 45 | 12820 | 22 | 56 |

Remarks:

- Average of \(^{14}C\) ages at 249 and 250 cm depth:
 - KIA7652 | 23258-2 | 249 Sinistral | 6120 | 30 | 6250 | 12 | 56 |
 - KIA7653 | 23258-2 | 250 Sinistral | 6250 | 30 | 6380 | 12 | 56 |
 - KIA7654 | 23258-2 | 250 Sinistral | 6380 | 30 | 6510 | 12 | 56 |
 - Average of \(^{14}C\) ages at 249 and 250 cm depth:
 - Replaced by age of N. pachyderma dextral
 - Replaced by age of N. pachyderma dextral
 - Replaced by age of N. pachyderma dextral
 - Ignored because of age reversal
specimens per gram dry sediment, respectively. Common distinct maxima of both planktic and benthic foraminifera occur at approximately 20-cm intervals in the top 255 cm. Benthic and planktic foraminifera are rare to absent during the lithic-grain maximum at 415–310 cm.

SIMMAX-based summer SST estimates from planktic foraminifera range near 2.5°C below 300 cm and rise to approximately 8°C from 260 to 180 cm (Fig. 3). Subsequent summer SST dropped to 2.5–5.0°C in the top 180 cm, with a few extremely narrow warm intervals of about 7.5°C near 150 and 50–40 cm. Winter temperatures are approximately 3–4°C lower than during summer. Our SIMMAX-based SST reconstruction is largely corroborated by the ANN estimates. The main difference between the two techniques is that the ANN-based record shows slightly more short-term variability, somewhat warmer SST near 5000 and during the last 1000 years (Fig. 3).

Discussion

Age model

The age model is based mainly on 14C dating. In addition, the abrupt planktic δ18O decrease at 325–318 cm depth is used as prominent age control point, being tied to the end of the Younger Dryas at 11.6 cal. kyr BP in the GISP2 δ18O air temperature record, the base of the Holocene. Within the Holocene, the age model is based on linear interpolation between 14C dates calibrated to calendar years (Fig. 3, upper right). The resulting sedimentation rates gradually decrease from >100 cm/kyr in the Early Holocene to approximately 15 cm/kyr in the middle and late Holocene (Fig. 3), yielding an average sampling resolution of <10–70 years (Table 1).

Near to the Barents shelf and slope, the AMS 14C ages and the resulting age model may be biased by unusually high, intermittent downslope injections of subfossil specimens of *N. pachyderma* (sin.) and organic matter reworked within the nepheloid layer (Rumohr et al. 2001). For example, the Holocene AMS 14C dates show various major and minor age reversals. Moreover, two 14C ages measured on total organic carbon at 160–165 cm (11.38 14C kyr BP) and 189–194 cm (14.59 14C kyr BP) (Blaume 1992; not listed in Table 1) are much older than the ambient foraminifera-based dates.

To constrain the potential age bias resulting from reworked old tests of *N. pachyderma* (sin.), we 14C-dated three *N. pachyderma* (dex.) samples. Extremely low specimen numbers unfortunately prevented us from dating more samples of this species. Its specimens can only derive from the local pelagial in the warm West Spitsbergen Current on top of core site 23258, but barely from lateral sediment input from the polar Barents shelf, different from tests of *N. pachyderma* (sin.). Two of three paired 14C ages show that age estimates based on *N. pachyderma* (dex.) are only 150–400 years younger than those based on *N. pachyderma* (sin.), which were therefore ignored in our age model. The age difference corresponds to a proportion of 5–10% of reworked *N. pachyderma* (sin.) tests, which were formed after the Belling time transgression, with an assumed average age of 11,500 years BP. However, the paired age estimates also show that the influence of reworked old specimens on the 14C ages of *N. pachyderma* (sin.) is generally so low that it can almost be neglected.

We also ignored an age of *N. pachyderma* (dex.) at 237 cm depth (8600 y ± 70 = 9630 cal. yr BP) because it would imply an aberrant sedimentation rate of 250–∞ cm/kyr compared to a neighbour 14C age of *N. pachyderma* (dex.) at 207 cm depth (8555 y ± 55 = 9570 cal. yr BP), 30 cm further upcore. However, no pertinent sediment structures such as graded and/or coarse-grained sediment layers occur in this depth range, which might record such an extreme and ‘instantaneous’ sediment accumulation. For this reason, an interpolated age of 9921 cal. yr was derived for 237 cm depth from the average sedimentation rate of 91.14 cm/ kyr, characteristic of the Early Holocene section.

The resulting age model (Table 1, Fig. 3) produces Early Holocene sediment records, where both a significant increase in coarse fraction near 155–175 cm depth and the final phase of a major cooling indeed are consistent with the prominent ‘8,200-yr cooling’ (8330 ± 80 yr BP according to Baldini et al. 2002) and its precursor cooling trend found in the Greenland δ18O records (Grootes & Stuiver 1997; Johnsen et al. 2001).

Long-term change in Holocene sea surface conditions

The SIMMAX-based and ANN-based SST records reveal three different climatic regimes of unequal length in the Holocene at Site 23258 (Figs 3, 4). The initial δ18O decrease by 0.7‰ between 11.9 and 11.6 kyr ago was just paralleled by a slight SIMMAX-based and ANN-based cooling and thus indicates primarily a global ice volume decrease and/or a local meltwater injection. The subsequent Preboreal SST rise lasted for <1000 years 11.6–10.75 kyr ago and included 3 stepwise massive warmings accumulating to a total of 7°C for summer. They indicate a rapid poleward advance of the warm West Spitsbergen Current. On the basis of threshold SST estimates (Sarnthein et al. in press) sea ice of >50% concentration disappeared during both summer and winter near 11.25 kyr BP, a prelude to the Holocene thermal maximum. During that time coarse, lithic grains characteristic of ice-rafted debris (IRD) and other local lateral sediment input disappeared almost completely (Fig. 4).
High SST of 7.5–8.5°C during summer characterize the second major Holocene unit. This thermal optimum appears at Site 23258, 75°N, as early as 10.75–8.8/7.7 kyr BP (Fig. 4). During this time, the ANN-based SST record displays a SST variability that is little higher than the SIMMAX-based record (Fig. 3), the SST variations of which are smoothed by using 10 modern-analogue samples. This thermal maximum is
almost coeval with a SST maximum in the western Fram Strait (Bauch et al. 2001) and the prominent maximum of thermophilous molluscs on Spitsbergen (Salvigni et al. 1992). However, it is much earlier than the thermal maximum in the mid-latitude Atlantic (Marchal et al. 2002) and a recent chironomid record from northern Fennoscandia (Korholla et al. 2002). It is coeval with the Early Holocene insolation maximum and mimics the climate trends recorded in Greenland and Severnaya Zemlya ice cores (10.5–9.5–8.5 kyr BP; Koerner & Fisher 1990; Alley et al. 1999; Lubinski et al. 1999). Both high SST and low planktic δ¹³C values (0–0.25‰ corresponding to 0.8–1.1‰ in Dissolved Inorganic Carbon (DIC) of ambient sea water (Labeyrie & Duplessy 1985) reflect a maximum advection of warm, but poorly ventilated Atlantic surface water (Sarnthein et al. 1995; Simstich 1999) in the West Spitsbergen Current from 10.7 to 8.8 kyr BP (Figs 1, 4). The intensified warm-water advection also implied a high flux of pelagic carbonate (Weinelt et al. 2001), thus leading to maximum sedimentation rates (Fig. 3). Near the beginning and end of the thermal optimum the SST records appear highly unstable and flickering within decades to centuries. So far, we do not know whether this is a real signal or an artifact because of lateral sediment injections (see below).

The 3000-year-long Holocene optimum was interrupted by an apparently 600-year-long significant cooling down to 3–5°C during summer, dated to 8.8–8.2 kyr ago for SIMMAX SST (Fig. 4) and to 8.55–8.2 for ANN SST. This cold event corresponds to the well-known cold spell in the Greenland ice cores (Johnsen et al. 2001) and various marine (De Vernal et al. 1997; Wang et al. 1999; Bond et al. 2001) and terrestrial (von Grafenstein et al. 1998; Baldini et al. 2002) sediment records, a cold spell culminating near 8300 yr BP. The onset, middle and end of the cold spell are marked by maxima in coarse fraction, as we surmise, the result of lateral sediment discharge tied to either storminess or sea-ice-induced formation of winter water cascades from the Barents shelf, in harmony with the formation of winter sea ice depicted in Fig. 4. The reworked polarforaminifera specimens were obviously insufficient to produce a prolongation of the cold spell by more than 50–100 years.

The overall cooling trend after 9 kyr BP may resemble a response to decreasing insolation during summer, per analogy to other published records (Koerner & Fisher 1990; Alley et al. 1999). Within this time, the last 7700 years form the third distinct and longest unit of the Holocene. It began with a sudden and almost irreversible SST reduction of 3°C, coeval with cold event b’ in a speleothem δ¹⁸O record from Ireland and in GISP2 (McDermott et al. 2001). Later on, SST varied between 2°C and 5°C during summer. Winter SST generally dropped to 1°C and less, leading to extensive periods of winter sea ice. Some centuries possibly had a perennial sea ice cover, such as near 6.75 kyr BP. During this time the intensity of heat advection with the warm West Spitsbergen Current was reduced. In contrast, the polar East Spitsbergen Current (ESC) and/or the wake of the Jan Mayen Current which are both marked by high planktic δ¹³C values of 0.7–0.8‰ (equal to 1.5–1.65‰ of DIC in ambient sea water) advanced closer to Site 23258 and the local polar front located along the southern margin of the ESC shifted south.

The generally cool Late Holocene was interrupted by some short-lasting, but marked warmings. During summer they reached 7–8°C around 5500, 2200 and 1800–1600 years ago. The latter two ‘M-shaped’ excursions are also known from North GRIP (Johnsen et al. 2001), approximately coeval with the Roman climatic optimum, from core MD95-2011 from the Voering Plateau (Marchal et al. 2002), and from the Irish speleothem record (McDermott et al. 2001). These short-term warmings were superimposed on two more extended phases of general slight warming and disappearing sea ice from 6.4–5.2 and 3.0–1.6 kyr BP. The Late Holocene warming is more pronounced in the ANN-based record. The underlying increase in Atlantic warm-water advection also induced a general drop in planktic δ¹³C at Site 23258 to 0.0–0.5‰ (Fig. 4), characteristic of Atlantic inflow water (Sarnthein et al. 1995; Simstich 1999). Marchal et al. (2002) showed similar trends of Late Holocene warming in planktic foraminifera-based records of summer SST on the Voering Plateau and in the eastern Irminger Sea. Like the SST curves at Site 23258, these records stem from the main track of North Atlantic poleward heat advection and hence support our view of a slight Late Holocene increase in thermohaline circulation. During this time a significant warming was also recorded from northern Fennoscandia (Korholla et al. 2002).

In contrast to SST, the Holocene planktic δ¹⁸O values remained almost constant (Fig. 4) except for a minor δ¹⁸O increase during the cold period 8.6–8.2 kyr BP and a unique short-term planktic δ¹⁸O maximum at the start of the Dark-Age Cold Period (1600–1000 yr BP; McDermott et al. 2001). The planktic δ¹⁸O curve appears largely uncoupled from SST variations throughout the Holocene. In part, this may be linked to a significant portion of polar N. pachyderma (sin.) specimens that were laterally admixed downslope from the cold Barents shelf water, as discussed below. More important, the δ¹⁸O signal of N. pachyderma (sin.) is formed at 70–200 m water depth (Simstich et al. 2002), whereas SIMMAX-based and ANN-based SST estimates are calibrated to 10 m depth. Accordingly, we surmise that the Holocene warmings of the West Spitsbergen Current were largely confined to a thin veneer of surface water on top of the calcification habitat of N. pachyderma (sin.).
Lateral sediment injections

As outlined, Holocene sediments of the last 11.1 kyr are barren of IRD, in harmony with absent major iceberg sources in the Holocene Nordic Seas. However, there are some 13–15 discrete sediment layers enriched in coarse fraction, which are non-graded and not separated by basal unconformities, thus non-turbiditic. Most coarse-fraction maxima comprise similar excursions in the abundance of planktic and benthic foraminifera and likewise, of lithic grains in the 63–150-μm fraction (Figs 2, 4). The coeval excursions of such different sediment components may help to trace down the origin of the layers at Site 23258 to lateral sediment injections which form the most spectacular signals of Holocene climate variability (Fig. 4), in harmony with modern oceanographic findings and sediment trap data (Backhaus et al. 1997; Rumohr et al. 2001).

The trap data reveal a massive downslope transport of sediment from the Barents shelf. This conclusion is based on (1) a general increase in the fluxes of carbonate and particulate organic carbon with increasing water depth (Thomsen et al. 2001); (2) a clear maximum in the lithogenic and carbonate flux during fall and winter (Honjo 1990), which suggests a link between sediment transport and cascades of dense winter water from the Barents shelf; and (3) tests of benthic foraminifera, found as far as 350 m above the sea floor (von Bodungen et al. 1991).

A series of near-bottom T-S records on the slope near Site 23258 (Blauze 1992) shows that plenty of dense bottom water is produced along with sea ice-induced brine formation close to the study area at 75°50 N, 114°53 E and 0–363 m water depth (Midrun 1985; Backhaus et al. 1997). The resulting bottom currents are sufficient to erode sediment on the nearby Barents shelf and upper continental slope. The ensuing sediment plumes today penetrate down to a major pycnocline near 1200 m water depth, from where the coarse particles fall out to Site 23258.

Common extreme fall and winter storms on the Barents shelf form an alternative powerful mechanism that leads to extensive sediment reworking on the shelf and the formation of sediment plumes, as found in front of the Kveiteholva valley (Rumohr et al. 2001; Fohrmann et al. 2001).

Relative to the planktic δ18O record the injections of reworked benthic foraminifera resulted in an apparent delay of the benthic δ18O signal of C. wuellerstorfi in the Early Holocene, where Younger Dryas-style high values of 3.95–4.15‰ persisted until 9800 cal. yr BP (230 cm depth; for comparison, the δ18O level of glacial Norwegian Sea Overflow water was 4.2–4.9‰). Only over the last 9200 yr BP (top 190 cm core depth) did the benthic δ18O values reach 3.5–3.7‰, characteristic of the Holocene, as corroborated by high benthic δ13C values of 1.2–1.6‰ (Fig. 4).

In summary, the discrete layers of coarser grained deposits form a striking document of short-term increased lateral sediment injections. They form distinct signals of climate deterioration which probably involved periods of both cascades of dense brine water induced by seasonal sea ice formation and/or enhanced storminess on the Barents shelf south of Svalbard. Accordingly, the Early Holocene thermal maximum was almost free of sediment injections, whereas prominent sediment injections mark the onset and end of the cold spell 8850–8200 years ago (Fig. 4). The injection record of the last 8000 years mimics with great detail a series of short periods with predominantly stormy ocean climate deduced from raised-beach ridges along the northern coastline of Kola Peninsula (Møller et al. 2002). This match suggests similar oscillations of storminess over the broad region of the Barents shelf. Moreover, the injections are coeval with harsher climates on Greenland (Johnsen et al. 2001: fig. 8) and, accordingly, with a reduced poleward heat transfer from the subtropical Atlantic, although the relationship to short-term, small-scale local SST variations is not unequivocal (Fig. 4).

Frequency of downslope sediment injections

To constrain the ultimate climate forcing which may induce the numerous events of Holocene cooling and downslope sediment injections at Site 23258, we estimated the most prominent concentrations of variability in the spectral domain. Over the entire Holocene, the recurrence intervals of benthic/planktic foraminifera and the total coarse fraction are non-stationary and primarily cluster within two bands, i.e. between 400 and 650 years and between 1000 and 1350 years (Fig. 5, right panel). From 10 to 6 kyr BP the variance of planktic and benthic foraminifera and the coarse fraction is centred at significant (>80%) spectral peaks near 885, 505 (in one case), 230, 145 and 93 years (Fig. 5, left panel).

The latter periodicities are distinctly shorter than the DO cycles in marine isotope stages (MIS) 2–4, but possibly correspond to the Holocene spacings of re-stained IRD quartz spikes in the North Atlantic (Bond et al. 2001) and of percent Globigerina quinqueloba in the Norwegian Channel (Klitgaard-Kristensen et al. 2001). In the better resolved Early Holocene record, these fluctuations reveal a dominant periodicity of 850–900 years similar to the Early Holocene sediment injections at Site 23258.

The potential origin of the maxima in spectral power density and the event spacings seen in core 23258 may perhaps be constrained through their similarity with variations of cosmogenic 14C and 10Be isotopes (Beer et al. 2002), both regarded as characteristic of changes in solar forcing (Fig. 6). Low solar activity is associated with increased production of cosmogenic nuclides and is expected to induce climate deterioration (Stuiver et al. 1995; Grootes & Stuiver 1997). These authors suggested a solar origin for the weak Holocene (δ18O-
based) climate cycles on Greenland on the basis of 510–
530-year, (625-) and 830–1050-year-long oscillations in
atmospheric 14C content.

However, variations in oceanic THC may also lead to
a differential transfer of CO$_2$ between the ocean and the
atmosphere and thereby produce quasi-periodic changes
in Δ^{14}C (i.e. of the atmospheric 14C content). The THC
linkage is supported by similar 550-year spectral peaks
in Δ^{13}C and the %CaCO$_3$ and planktic δ^{13}C records at
North Atlantic Site NEAP15K, moreover, by the fact
that the two signal groups are almost in phase (Chapman
& Shackleton 2000).

Fig. 5. Left panel: Power spectral density and salient periodicities of Early Holocene (10–6 kyr BP) sediment injections from the Barents shelf
for core 23258-2 as indicated by maxima of planktic and benthic foraminifera tests and of sediment coarse fraction. Dotted 80% confidence
line of red noise and spectra were estimated with the Redfit program (Schulz & Mudelsee 2002). Right panel: Temporal spacings of maxima in
benthic and planktic foraminifera and coarse fraction over the entire Holocene as shown in Fig. 4. Grey bars delineate clusters of recurrence
intervals.
Different from previous authors, Schulz & Paul (2002) succeeded in constraining more precisely the master periodicity in GISP2 δ^{18}O near 890 years for the early Holocene and 960 years for the entire Holocene (not shown), both numbers significant at 99.8%. On the one hand, this climate cycle may be linked to an orbital (eccentricity-linked) period which modulates incoming solar radiation (Loutre et al. 1992). On the other hand, the effect of this mode of orbital forcing on the Earth’s climate is regarded as minor, since its maximum insolation changes hardly reach 1 mW m$^{-2}$ at 65°N. Moreover, the two signals do not show a simple phase lock. Accordingly, Schulz & Paul (2002) assigned the millennial-scale changes in Holocene climate to the outlined internal oscillations of the ocean THC as ultimate forcing mechanism, similar to the Dansgaard-Oeschger cycles during MIS 2–4.

The temporal evolution of amplitudes in (1) the 890/960-year δ^{18}O signal at GISP2 and (2) the periodic sediment injections at Site 23258 differs significantly. In GISP2 the δ^{18}O amplitudes markedly decrease from early to late Holocene times (Schulz & Paul 2002), although the amplitude change may be overly dominated by the 8.3-kyr-cold event. In contrast, the amplitudes of the quasi-periodic sediment injections at Site 23258 remain approximately constant over the entire Holocene. This trend is similar to the major spikes of the Greenland 10Be flux record (Figs 4, 6), which is mainly controlled by the atmospheric 10Be concentration. Different from 14C which may be also controlled by oceanic THC, the 10Be flux is largely accepted as an unequivocal signal of changes in solar activity (Beer et al. 2002).

On the basis of Figs 5 and 6 we thus finally conclude (1) that the Holocene sediment injections from the western Barents shelf at Site 23258 reflect pulses of climate deterioration in northern high latitudes and (2) that their 400–650 and 1000–1350-year recurrence intervals may be paced by solar forcing (Fig. 6) on top of internal oscillations in the ocean THC. This conclusion is supported by the recent results of Bond et al. (2001), who also discussed the link between Holocene climate cycles and solar forcing on the basis of a coherency of 0.74 (significant at >95%) for 10Be and stacked marine IRD records from the North Atlantic, although based on indistinct spectral peaks. The 1000–1350-year intervals are possibly multiples of the 400–650-year spacings.

In addition, the early Holocene frequency spectrum of sediment injections from the Barents shelf shows a number of significant periodicities near 230, 145 and 92/95 years (Fig. 5, left panel), well-known as Suess/deVries and Gleissberg cycles, driven by insolation changes (Beer et al. 1994; Hoyt & Schatten 1993; Stuiver et al. 1995; Yu & Ito 1999). Obviously, the weak solar-induced climate variations are best recognized in Holocene climate records, where they are not concealed by other, stronger factors of millennial-scale climatic change, such as the DO cycles triggered by major ice breakouts from Greenland (as suggested by van Kreveld et al. 2000). They have predominated during cold marine isotope stages at lowered sea level only (Schulz et al. 1999) and, accordingly, have a much reduced influence on climate during Holocene times of high sea level, when ice breakouts are unlikely to occur along the East and North Greenland margins.

Conclusions
A Holocene sediment record from the lower western slope of the Barents shelf reveals some 13–15 distinct spikes of coarse sediment fraction, which equally consist of lithic grains and benthic and planktic foraminifera. The spikes are ascribed to lateral sediment injections produced by dense, highly turbid winter water cascades, such as monitored during modern winter. They result from enhanced sea ice formation and storminess on the
northern Barents shelf, i.e. from short-term pulses of climate deterioration, and reach down to the deep pycnocline near 1200 m water depth. Most prominent sediment injections mark the onset and end of the well-known cold spell 8300 years ago. The timing of sediment injections and storminess events closely resembles a storminess record from raised-beach ridges along the northern coastline of the Kola Peninsula.

The Early Holocene sediment injections from the Barents shelf show various significant and robust spectral peaks of 885 and 505 years. Over the entire Holocene, pervasive events recur every 400–650 and 1000–1350 years, similar to periodicities registered in the GISP2 δ^{18}O record, in Δ^{13}C and, most importantly, in the Greenland 10Be flux (Stuiver et al. 1995; Chapman & Shackleton 2000; Schulz & Paul 2002). Accordingly, these Holocene periodicities are assigned to solar forcing, a weak climate factor only registered during the Holocene interglacial, when climatic change at multicentennial and millennial time scales was much less affected by strong thermohaline variations which produced the DO cycles characteristic of glacial times.

14C datings in core 23258 in part were biased by the lateral admixture of old polar foraminifera from the Barents shelf. Thus the key to the age model was dating the subpolar species N. pachyderma (dex.), which only forms in the warm West Spitsbergen Current and cannot stem from lateral sediment injections. These dates helped to properly constrain the quality of the N. pachyderma (sin.) dates.

The major postglacial warming of the West Spitsbergen Current by 4–5°C is confined to the Early Holocene, 10.65–7.6 kyr BP. The timing of this early thermal maximum closely matches the thermal optimum found in ice cores from Severnaya Zemlaya and Greenland and a record of thermohaline mulluscs on Spitsbergen, suggesting that this early thermal optimum was dominant over a broad region of the Eurasian Arctics. A cold spell intervened at 8.7–8.2 kyr (little prolonged by reworked polar foraminifera specimens). Most prominent temperature changes occurred within a few decades and less.

Acknowledgements. – We gratefully acknowledge the valuable help and suggestions of J. C. Duplessy, Gif-sur-Yvette and T. Kiefer, Kiel, and various colleagues in a joint EU project. B. Kromer, Heidelberg, and J. Beer, Bern, kindly provided updated versions of Holocene 14C production rate and 10Be flux. K. Kissling and several students assisted in producing the large data set with tedious but careful routine work. S. Rothe kindly helped with producing the final figures. This article benefited greatly from the constructive reviews of M. Blaume, F. 1992: Hochakkumulationsgebiete am norwegischen Kontinentalhang: Sedimentologische Abbilder topographiegeführter Stromungsmuster. Berichte SFB 313, Universität Kiel 36, 1–150.

References

Schulz, M., Berger, W. H., Sarnthein, M. & Grootes, P. M. 1999: Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophysical Research Letters 26, 3385–3388.

