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ABSTRACT

The structural evolution and sequence-stratigraphic architecture of the syn-rift 
Middle Miocene (Langhian) Kareem Formation were studied in the Western Sub-
Basin (WSB) of the Gulf of Suez, Egypt. Biostratigraphic data, facies interpretations, 
and log data from thirteen wells were used to construct six tectono-sedimentary 
scenarios and lithofacies-distribution maps, which illustrate the paleogeography 
during six systems tracts. Abrupt thickness and facies changes reflect deep basins 
and adjacent high-relief areas created by differential fault-block movements. 
Within the WSB seven individual fault blocks record complex, tectonically 
controlled deposition of the Kareem Formation, which we subdivide into two 
third-order sequences. Earlier tectonic interpretations, facies analysis, and 
stratigraphic correlations from individual fault blocks were used to interpret the 
varying depositional settings during six systems tracts and, as a consequence, to 
discern the structural evolution of the WSB during the Middle Miocene. 

INTRODUCTION

The relationships between tectonics and sedimentation in extensional settings reveal the role of fault 
evolution and interaction in controlling the deposition, dispersal, and architecture of syn-extensional 
sediments (Gawthorpe et al., 1990, 1994; Gawthorpe and Hurst, 1993; Hardy et al., 1994; Gupta et 
al., 1999; Young et al., 2000; Winn et al., 2001; Jackson et al., 2005; Herkat and Guiraud, 2006; Khalil 
and McClay, 2008). Structural and sedimentological studies of active rift basins show that abrupt 
thickness and facies changes as well as slip rates along normal faults are the major factors influencing 
the spatial distribution and architecture of depositional systems adjacent to the fault zones (Seger 
and Alexander, 1993; Gawthorpe and Leeder, 2000; Leeder et al., 2002; Jackson et al., 2005; Herkat 
and Guiraud, 2006; Leppard and Gawthorpe, 2006; Khalil and McClay, 2008). In the southwestern 
part of the Gulf of Suez, syn-rift clastics of the Kareem Formation formed coarse-grained fan deltas 
and submarine fans at sediment-input points along the coastal plain. The aim of this paper is to 
illustrate the structural control on sequence stratigraphy of the syn-rift Middle Miocene (Langhian) 
Kareem Formation, and the tectonic influence on the location of major sediment-input points in the 
southwestern part of the Gulf of Suez.   

GEOLOGIC SETTING

The Gulf of Suez is a Neogene continental rift system that developed by the separation of the African 
and Arabian plates in Late Oligocene – Early Miocene time. Geomorphologically it represents a 
rejuvenated, slightly arcuate NW-SE topographic depression, known as the Clysmic Gulf. It extends 
northwestward from 27°30’N to 30°00’N. Its width varies from about 50 km at its northern end to 
about 90 km at its southern end where it merges with the Red Sea (Bosworth and McClay, 2001, 
Figure 1). The Gulf of Suez is dissected by a complex pattern of faults: N-S to NNE-SSW as well as 
E-W trending normal faults at the rift borders and within the rift basin, and NE-trending strike-slip 
faults crossing the Gulf basin (Abd El-Naby et al., 2009). The interaction of these major fault systems 
resulted in a complex structural pattern consisting of numerous horsts and grabens with variable 
relief and dimensions.

The Gulf of Suez is subdivided into three structural provinces according to their structural settings 
and regional dip directions: the northern Araba dip province (SW dips), the central Belayim dip 
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province (NE dips), and the southern Amal-Zeit 
dip province (SW dips, Figure 1). These provinces 
are separated by two NE-trending accommodation 
zones: the Galala-Abu Zenima Accommodation 
zone (GAZAZ) in the north, and the Morgan 
Accommodation zone (MAZ) in the south. The 
study area of the WSB (about 60 km long and 12.5 
km wide) covers the MAZ and the northern part of 
the Amal-Zeit dip province (AZP, Figure 1).   

Based on surface and subsurface data, the 
stratigraphic succession of the Gulf of Suez can be 
subdivided into three depositional units (Figure 
2, see Abd El-Naby et al., 2009). The pre-rift units 
include Proterozoic basement rocks and Paleozoic 
to Upper Eocene sediments. These formations 
are important as source and reservoir rocks. The 
Upper Oligocene and Miocene syn-rift units 
contain source, reservoir and seal lithologies, as 
well as volcanic rocks. The post-rift units are of 
Pliocene to Pleistocene age.

Figure 1: Tectonic map of the Gulf of Suez Rift (modified after Bosworth and McClay, 2001; Abd El-
Naby et al., 2009). The study area (rectangle, including location of the studied 13 wells) is located 
in the northern Amal-Zeit dip provinces and the Morgan Accommodation Zone. 
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MATERIALS AND METHODS

Our sequence-stratigraphic analysis of the 
Kareem Formation is based mainly on the 
interpretation of key chronostratigraphic 
surfaces and systems tracts identified in 
13 wells located in the study area of the 
Western Sub-Basin (WSB, Figure 1). We 
utilized lithologic interpretations, cuttings, 
logs (Gamma Ray [GR], Resistivity, 
Sonic, Density, and Neutron), planktonic 
foraminifer abundances (PFA), and 
benthonic/planktonic (B/P) ratios to detect 
paleobathymetric and environmental 
variations during deposition. Our approach 
for defining the key surfaces and systems 
tracts is based on Emery and Myers (1996), 
Posamentier and Allen (1999), and Rider 
(2004). 

Tectono-sedimentary models and lithofacies 
distribution maps were constructed for six 
systems tracts interpreted in the Kareem 
Formation. Facies analysis allows us to 
illustrate the effect of synrift cross faults 
and fault-block movement on Kareem 
sedimentation (Figures 2 and 3).

DESCRIPTION OF KEY 
SURFACES AND SYSTEMS 

TRACTS

The general description of both third-order 
sequences and six system tracts of the 
Kareem Formation can be summarized as 
follows. Most sequence boundaries (SBs) are 
marked by an abrupt decrease in GR and PFA 
(Figure 4). The lowstand systems tract (LST) 
sediments above each are characterized 
by blocky GR, relatively high resistivity, 
low velocity, and high to low density 
and neutron log responses, along with 
decreasing PFA and an increasing B/P ratio. 
The lithology of these sediments consists 
mainly of anhydrites and sandstones with 

Figure 2: Stratigraphic column of the Gulf of Suez (modified after Schlumberger, 1995;  
Abd El-Naby et al., 2009). 
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few argillaceous limestones and calcareous shales. Conglomerate clasts of mainly quartz with few 
feldspar grains, plus granite, carbonate, and shale, are also present. 

Transgressive surfaces (TS) are delineated by a gradual upward increase in GR and PFA, whereas 
the transgressive surface of erosion (TSE) is characterized by an abrupt increase in GR and PFA. The 
transgressive systems tracts (TST) are characterized by an upward increase in GR (“dirtying-upward”) 
and PFA coupled with decreasing B/P ratios, moderate to low resistivity, and high to low velocity. 
These sediments also are marked by high to low density and high to moderate neutron responses. 
The TSTs are composed mainly of calcareous shales, argillaceous limestones, and sandstones with 
few siltstones. Compared with the LST deposits, the TST sediments contain smaller clasts of quartz, 
shale, and carbonate as well as fewer feldspar grains.
 
The maximum flooding surfaces (MFS) coincide with peaks in GR and PFA. In contrast to the TSTs, 
the highstand systems tracts (HST) are marked by a gradual upward decrease in GR (“cleaning-
upward” trend) and PFA associated with increasing B/P ratios, moderate to low resistivity, high 
to low velocity, moderate to low density, and high to moderate neutron readings. These sediments 
consist of sandstones, calcareous shales, and argillaceous limestone intercalations with clasts of 
mainly quartz, plus shale, carbonate, and feldspar grains.

Marine sediments are absent on Fault Block (FB) V (Figures 8 to 13), while only thin fluvial sandstones 
(facies type C) are deposited on this fault block (Figure 3). These sandstones could not be referred 
to one of the defined systems tracts. 
The absence of marine sediments 
in the Amal-Zeit Province (AZP) 
at ERDMA-2 and SB374-2C wells 
(Figures 8 to 13) reflects a structurally 
controlled elevation of FB V above sea 
level. Furthermore, Early – Middle 
Miocene sediments (Kareem, Rudeis 
and Nukhul formations) are absent 
at SB374-2C well (see below for more 
discussion).
 
Important characteristics, including 
thickness, lithology, log trends, 
foraminiferal trends, and depositional 
environments of all systems tracts of the 
two third-order genetic sequences of the 
Kareem Formation are summarized in 
Figure 5. Moreover, we summarize the 
individual tectonic block movements 
and thickness variations during 
deposition of all these systems tracts 
(Figure 6). 

DESCRIPTION OF FAULT 
BLOCKS IN THE WESTERN 

SUB-BASIN (WSB)

Seven fault blocks (FB I to FB VI, 
including FB IVa and FB IVb) are 
defined in a tentative tectono-
sedimentary model in the study area 
(Figure 7). The location of these fault 
blocks along the WSB can be compared 
to the two-way time-structure contour 

Lithology Petrography and 
fossil contents

Depositional
Environments

Coarse grains, large pebbles, angular 
to subrounded, poorly sorted. 
Fe-oxides and carbonate cements. 
Subrounded to angular clasts of mainly 
quartz, feldspars, granite, carbonate, 
mica flakes and shale. Few planktonic 
and benthonic foraminifers.

Coarse to medium grains, smaller 
pebbles, subrounded to angular, 
moderately to poorly sorted. Fe-oxides 
and carbonate cements. Smaller 
subrounded to angular clasts of similar 
composition as fan delta. Few 
planktonic and benthonic foraminifers.

Coarse to medium grain, large 
pebbles, subangular to angular, poorly 
to moderately sorted. Fe-oxides and 
carbonate cements. Unfossiliferous.

Grey-dark grey, flaky, silty fissile, highly 
calcareous, locally grading to 
argillaceous limestones, highly 
fossiliferous (rich in planktonic 
foraminifers and nannofossils with few 
benthonic foraminifers).

White to pale brown, cryptocrystalline, 
very fine, argillaceous, highly sandy, 
locally cherty and anhydritic. Highly 
fossiliferous (rich in planktonic 
foraminifers and nannofossils with few 
benthonic foraminifers).

Milky white, milky grey white, white, 
micro- to cryptocrystalline, occasionally 
calcareous.

Fan delta

Submarine fan

Fluvial

Middle neritic 
to upper 
bathyal

Lagoonal to 
upper bathyal

Lagoonal

Sandstones 
(A)

Sandstones 
(B)

Sandstones 
(C)

Shales

Limestones

Anhydrites

Figure 3: Characteristics of the six major lithologies of the 
Kareem Formation in the study area and general facies 
interpretations based on cuttings and core description 
(with additional remarks from the original descriptions 
of the composite logs).
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map of top Kareem Formation (Abd El-Naby et al., 2009). The blocks are bounded by six major cross 
faults with near-orthogonal orientations to the NW-SE oriented clysmic faults (Figure 7). The rates of 
vertical and horizontal movements along these cross faults varied, resulting in differential subsidence 
rates and rotations of the individual fault blocks. Subsidence rates of the individual fault blocks were 
deduced from thickness variations of the individual systems tracts within FB I to FB VI (Figure 6; see 
also Young et al., 2000; Winn et al., 2001; Jackson et al., 2005; Herkat and Guiraud, 2006; Khalil and 
McClay, 2008). 

FB I is located at the northern boundary of the MAZ (Figure 7) and characterized by right-lateral 
transtensional movements and low to moderate subsidence rates (Figure 6). FB II is located in the 
MAZ southeast to the structurally higher FB I (Figure 7). Right-lateral transtensional movements of 
FB II were accompanied by low to moderate subsidence rates (Figure 6). FB I and FB II reacted as one 
fault block during during deposition of LST2 (see below for more discussion). FB III represents the 
structurally lowest block in the WSB (Figure 7) with maximum subsidence rates indicated by high 
sediment accumulation. It forms the southeastern boundary of the MAZ and is characterized by both 
right-lateral and left-lateral transtensional movements (Figure 6). FB IV is located at the northeastern 
part of the AZP (Figure 7) and underwent left-lateral transtensional movements associated with low 
to moderate subsidence rates (Figure 6). This fault block was affected by a NW-oriented fault (Figures 
8 to 13), which subdivided it into two sub-blocks (details are addressed below). FB V remained in a 
structurally high position (above 90 sea level) during the entire time of Kareem deposition (Figures 
7 to 13). FB VI, located at the southernmost part of the WSB (in the AZP), experienced left-lateral 
transtensional movements, coupled with low to high subsidence rates (Figure 6). 

SEQUENCE STRATIGRAPHY AND FACIES ANALYSIS OF THE KAREEM 
FORMATION

Our third-order sequences of the Kareem Formation, KS1 (Kareem sequence 1) and KS2 (Kareem 
sequence 2), can be contrasted with sequences S40 and S50 of Dolson et al. (1996), Ramzy et al. (1996), 
and Krebs et al. (1997), which are widely distributed in the Gulf of Suez (Figure 5). Sequence S40 
encompasses the lower part of the Kareem Formation and is underlain by the T30 “terrace” (erosional 
unconformity, Figure 5).

Sequence S40 is overlain by the T40 terrace, which represents a third-order MFS with a condensed 
section deposited in an open-marine environment (Ramzy et al., 1996). However, this MFS was never 
observed in the field (Ramzy et al., 1996; Dolson et al. 1996). The T40 terrace is overlain by sequence 
S50, coinciding with the upper part of the Kareem Formation. The T50 terrace above represents an 
unconformable SB and forms the base to the Belayim Formation. Thus, the Kareem Formation was 
interpreted as a single transgressive-regressive cycle (transgressive systems tract followed by highstand 
systems tract) by Dolson et al. (1996). In contrast, we interpret two third-order sequences KS1 and KS2 
in the Kareem Formation, which are described from base to top in the following sections. 

Kareem Sequence 1 (KS1)

Lower Boundary of Kareem Sequence 1 (SB1)
The base of KS1 is Sequence Boundary 1 (SB1), a regional unconformity between the Kareem Formation 
and underlying Rudeis Formation (Patton et al., 1994; Bosworth, 1995; Bosworth and McClay, 2001). 
The abrupt decrease in GR at this surface is related to the basal anhydrite of the Kareem Formation, 
which overlies distal marine shale of the Rudeis Formation. SB1 reflects a rapid change in the 
environment of deposition triggered by a decrease in relative sea level (Underhill and Partington, 
1993, 1994). The submarine expression of SB1 is an erosion surface below the early LST1 deposits 
(Figure 4). In the WSB, SB1 marks the boundary between a retrogradational (“dirtying-upward”) log 
motif of the upper part of the Rudeis Formation to an aggradational to progradational (“cleaning-
upward”) log motif of LST1 (Figure 4). SB1 can not be followed to the southernmost part of the WSB 
(at the S. Ras El-Ush-1 well), due to a fault cut (Figure 4).
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Figure 5: Petrographic, log, and micropaleontologic characteristics, with accompanying 
interpretation, for all systems tract of the two third-order sequences (KS1 and KS2) of the Kareem 
Formation. Our interpretation is compared to previously described sequences (S40 and S50) in the 
Gulf of Suez (after Dolson et al., 1996; Ramzy et al., 1996; Krebs et al., 1997). 

Lowstand Systems Tract of Kareem Sequence 1 (LST1)
LST1 sediments are characterized by low GR, relatively high resistivity, low velocity, high to low 
density, and moderate to low neutron associated with decreasing PFA (Figure 5). Apart from the wells 
on FB V in the southern part of the WSB, sediments of the LST1 are present throughout the WSB. 
Argillaceous limestones and shales with few sandstones occur in the basin center and the southern 
parts of the MAZ (Morgan Accommodation Zone) on FB II and FB III (at the ERDMA-1, GB84-6 and 
GS334-2 wells, Figure 8). The lithology changes to anhydrites at FB I in the northern part of the MAZ 
(at the GC84-14 and LL87-3 wells) and at FB IV south of this zone (at the NN88-1, NN89-1, and Amal-
10 AST wells, Figure 8). In the southernmost part of the WSB on FB VI (at the S. Ras El-Ush-1 and W. 
Ashrafi-1X wells, Figure 8) the LST1 sediments are represented by argillaceous limestones. Thickness 
of LST1 ranges between 1 ft at NN88-1 and 43 ft at Amal-10AST (Figure 4). 
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Interpretation of Lowstand Systems Tract of Kareem Sequence 1 (LST1)
LST1 sediments deposited in portions of the WSB reflect relative sea-level fall that outpaced 
subsidence. The appearance of the first Middle Miocene evaporites (on structurally elevated FB I and 
FB IV, Figure 8a) at the base of the Kareem Formation, denotes an abrupt facies change from deep-
marine shale of the Rudeis Formation to a restricted lagoon in the southwestern part of the Gulf basin 
(Dolson et al., 1996; Bosworth and McClay, 2001). In contrast, during deposition of LST1 sediments in 
FB II and FB III in the MAZ and FB VI in the southernmost part of the WSB (Figure 8a), subsidence 
rates apparently outpaced the fall in relative sea level resulting in deposition of mainly deep-marine 
shales on FB III and hemi-pelagic carbonate sediments on FB II and FB VI (see also Winn et al., 2001; 
Carr et al., 2003; Jackson et al., 2005; Khalil and McClay, 2008). 

Rare terrigenous sediments, deposited in the MAZ on FB III (Figure 8a), may indicate fluvial processes, 
resulting from discharge of small amounts of detritus from elevated Proterozoic and pre-Miocene 
footwall blocks along the western rift shoulder (see also Gawthorpe et al., 1994; Salah and Alsharhan, 
1997; Young et al., 2000; Winn et al., 2001; Jackson et al., 2005. The thin and nearly uniform thickness of 
the LST1 sediments along the WSB indicates minor subsidence rates (Jackson et al., 2005). Thickness 
variations along FB IV (Figure 6) indicate block rotation down to the southeast during deposition of 
LST1 (Figure 8a). Similar relations between thickness variations and directions of fault block rotations 
were described in the Gulf of Suez (Winn et al., 2001) and the eastern Atlasic Domain of Algeria 
(Herkat and Guiraud, 2006). 

Transgressive Surface of Kareem Sequence 1 (TS1)
This surface separates the aggradational to progradational LST1 deposits from the overlying 
retrograding interval of TST1 (TS1, Figure 4). TS1 is marked by high GR and PFA and likely represents 

the onset of transgression and rising sea level, and may have been 
associated with erosion by high wave or tide energy in near-shore to 
inner-shelf environments.
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Figure 6: Tectonic movements (arrows) and thickness variations of each fault block (gray shaded 
areas) for the systems tract of the Kareem Formation. The sizes of the arrows are directly proportional 
to the subsidence rates. 
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Transgressive Systems Tract of Kareem Sequence 1 (TST1)
The retrogradational TST1 sediments are characterized by an upward increase in GR (“dirtying-
upward”), moderate to low resistivity, high to moderate velocity, and high to moderate density and 
neutron (Figure 5). These sediments also are marked by an upward increase in PFA and decreasing 
B/P ratios. Lithologically these sediments are mainly calcareous shales deposited on FB I in the MAZ 
(at the GC84-14 and LL87-3 wells, Figure 9), argillaceous limestones deposited on FB II in the MAZ (at 
the ERDMA-1 well) and FB IVb and FB VI in the AZP (at the NN88-1, NN89-1, S. Ras El-Ush-1, and 
W. Ashrafi-1X wells), and mainly shales with few argillaceous limestones on FB III in the MAZ (at the 
GB84-6 and GS334-2 wells, Figure 9). In FB IVa of the AZP (at the Amal-10AST well, Figure 9), TST1 
sediments are composed of sandstones (facies type A, Figure 3) and fine conglomerates at the base. 
Sand grains are subrounded to angular and composed mainly of quartz, feldspar, granite, carbonate 
and shale (see also Kandeel, 2008). The thickness of TST1 is quite variable (from 5 ft at GS334-2 to 98 
ft at NN89-1, Figure 4).

Interpretation of Transgressive Systems Tract of Kareem Sequence 1 (TST1)
Log response and lithofacies characteristics of TST1 sediments along portions of the WSB indicate an 
upward-fining and upward-deepening succession into more distal and shale-rich marine sediments. 
These likely were deposited during rising sea level and imply a decrease in depositional energy. 
These sediments may have been deposited in low-energy, middle- to outer-neritic to upper-bathyal 
environments, when the rate of sea-level rise exceeded the subsidence rate and the formation of 
accommodation space outpaced the rate of sediment supply (Jackson et al., 2005). The TST1 sediments 
are characterized by the presence of hemipelagic carbonates on FB II (in the MAZ), FB VI (in the 
AZP) and FB IVb (Figure 9a). The low B/P ratio and the very high PFA of these deposits indicate the 
incursion of a well-oxygenated, open-marine environment, following the evaporitic phase of LST1 
(Dolson et al., 1996). 
 

I

II

III

IV

V
VI

Northwest Southeast

Morgan Accomodation Zone
(MAZ)

Belayim
Province

(BP)

a

b

BP

MAZ AZP

Amal-Zeit Province
(AZP)

Shale

Sandstone

Argillaceous
Limestone

Evaporite

High Area

Systems Tract
Boundaries

Sediment
Supply

1 = GC84-14
2 = LL87-3
3 = ERDMA-1
4 = GB84-6
5 = GS334-2
6 = NN88-1
7 = NN89-1

8 = AMAL-10 AST
9 = AMAL-8
10 = ERDMA-2
11 = SB374-2C
12 = SOUTH RAS
        EL-USH-1
13 = WEST ASHRAFI-1X

N

0 6km

12
13

11

10

9
8
7

64
52

3
1

33º 36’

33º 24’

33º 12’

28º 0
0’

27º 4
8’

28º 1
2’

(a)

(b)

Gulf of Suez

Eastern
Desert

Figure 8: Tectono-sedimentary model (a) and lithofacies distribution map (b) for lowstand 
systems tract 1 (LST1) of the Kareem Formation. 



140

El-Naby et al.

In contrast, polymictic clasts within pebbly sandstones (facies type A, Figure 3) and conglomerates 
occur on FB IVa, indicating sediment influx along a major drainage system. Frequent slumping 
occurred, with detritus derived from elevated Proterozoic and pre-Miocene footwall blocks along the 
western rift shoulder. The drainage system extended along the elevated FB V and fed a prograding 
fan delta on FB IVa (Figure 9a). This block was structurally higher and subsided less than FB IVb 
during deposition of TST1. The absence of fan delta sediments on FB IVb reflects a drainage system 
centered on an east-dipping FB V (Figure 9). Similar structurally controlled deposition of syn-rift 
coarse-grained fan-delta systems is described from the eastern margin of the Gulf of Suez (Gawthorpe 
et al., 1990; Gupta et al., 1999), northern margin of the Gulf of Suez (Young et al., 2000; Jackson et al., 
2005), northwestern margin of the Red Sea margin (Khalil and McClay, 2008), and Gulf of Corinth 
(Dart et al., 1994). 
     
During lower rates of relative sea-level rise the sediment supply was greater than the rate of generation 
of new accommodation space at FB IVa, resulting in progradation of the delta on this block to the 
northwest (Figure 9). However, during rapid relative sea-level rise the sediment supply was unable 
to keep up with the increasing accommodation space, resulting in abandonment and transgression 
across the fan. Thickness patterns along FB I, FB IVa, FB IVb, and FB VI (Figure 6) indicate that these 
fault blocks rotated down to the southeast, whereas thickness trends along FB III reveal that this block 
rotated down to the northwest during deposition of TST1 (compare to Herkat and Guiraud, 2006, 
Figure 9). 

Maximum Flooding Surface of Kareem Sequence 1 (MFS1)
A maximum flooding surface (MFS1) separates deposits of the retrograding interval of TST1 below 
from the prograding deposits of HST1 above (Figure 4). This surface (including the TST1 sediments 
below) is associated with high values in GR and PFA. 
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Highstand Systems Tract of Kareem Sequence 1 (HST1)
The progradational HST1 sediments are characterized by an upward decrease in GR (“cleaning-
upward”), moderate to low resistivity and velocity, moderate to low density, and high to moderate 
neutron readings (Figure 5). These sediments also exhibit an upward decrease in PFA and increase 
in B/P ratio. Lithofacies of the HST1 are similar to TST1 (Figure 10). However, the HST1 sediments 
contain coarser grained sandstones (facies type A, Figure 3) with higher clast content on FB IVa in 
the AZP (at the Amal-10AST and Amal-8 wells, Figure 10). Thickness of HST1 varies from 5 ft at Ras 
El-Ush-1 to 128 ft at Amal-8 (Figure 4).

Interpretation of Highstand Systems Tract of Kareem Sequence 1 (HST1)
Lithofacies, paleontological, and progradational features of HST1 indicate a gradual regression with 
increasing terrigenous influx and transport during major river floods through drainage systems along 
FB V. As a consequence, a second fan-delta lobe evolved on FB IVa towards the northwest when the 
rate of sediment supply exceeded the rate of new accommodation space created by rising relative sea 
level (Figure 10). The abundance of conglomerate clasts and the coarsening of sandstones (facies type 
A) reflect increasing depositional energy and high-energy density flows, coupled with decreasing 
water depths (Young et al., 2000). Compared with the high influx of fan-delta sediments on FB 
IVa, few terrigenous sediments were deposited on FB III (in the MAZ, Figure 10a). The terrigenous 
sediments on FB III and FB IVa reflect the progressive unroofing of the uplifted Proterozoic and pre-
Miocene footwall blocks along the western rift shoulder. At the same time, hemipelagic carbonates 
accumulated on FB II, FB IVb, and FB VI (Figure 10) and indicate middle- neritic to upper-bathyal 
deposition. 

Thickness variations along FB I, FB III, and FB IVa (Figure 6) reveal that these blocks rotated down 
to the northwest, whereas thickness patterns along FB IVb reflect that this block rotated down to the 
southeast during deposition of HST1 sediments (Figure 10a). HST1 is limited upward by the second 
sequence boundary (SB2) which caps Kareem sequence 1 (Figure 4). 

Figure 10: Tectono-sedimentary model (a) and 
lithofacies distribution map (b) for highstand 
systems tract 1 (HST1) of the Kareem Formation. 
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Kareem Sequence 2 (KS2)

Lower Boundary of Kareem Sequence 2 (SB2)
The base of KS2 is delineated by Sequence Boundary 2 (SB2). This surface is marked by an abrupt 
decrease in GR and PFA, which may imply an abrupt jump to a shallower water facies during rapid 
lowering of relative sea level. This surface also marks an upward change from a progradational 
(“cleaning-upward”) log motif of HST1 deposits to an aggradational log motif of the overlying LST2 
deposits (Figure 4).

Lowstand Systems Tract of Kareem Sequence 2 (LST2)
The aggradational LST2 sediments have quite similar log characteristics to those of LST1 (Figure 5), 
with dominantly sandstones (facies types A and B, Figure 3) deposited on FB I, FB II, FB IVb, and FB 
IV (at the GC84-14, LL87-3, ERDMA-1, NN88-1, NN89-1, S. Ras El-Ush-1, and W. Ashrafi-1X wells, 
Figure 11). Sandstones, shales, and argillaceous cherty limestones characterize sedimentation on FB 
III (at the GB84-6 and GS334-2 wells), while anhydrites were deposited on FB IVa (at the Amal-10AST 
and Amal-8 wells, Figure 11). The thickness of LST2 changes from 14 ft at Amal-10AST to 432 ft at 
GB84-6 (Figure 4). 

Interpretation of Lowstand Systems Tract of Kareem Sequence 2 (LST2)
The sandstones (facies types A and B) and polymictic conglomerate clasts as well as mica in the 
LST2 sediments demonstrate high terrigenous influx in the WSB. The drainage systems experienced 
frequent slumping with abundant detritus likely supplied from the same source as sediments of LST1 
(Figure 11b). These drainage systems fed prograding fan deltas during LST2 on the structurally high FB 
I and FB II (in the MAZ) and FB IVb and FB VI (in the AZP, compare Gawthorpe et al., 1994; Salah and 
Alsharhan, 1997; Young et al., 2000). The role of antecedent drainage systems in focusing deposition 
of coarse-grained sediments is well known from similar rift basins, e.g. Gulf of Corinth (Seger and 
Alexander, 1993), Gulf of Suez (Gawthorpe et al., 1990; McClay et al., 1998; Gupta et al., 1999; Leppard 
and Gawthorpe, 2006), and the eastern Atlasic Domain of Algeria (Herkat and Guiraud, 2006).

LST2 received sediment also from turbidity currents beyond the shelf edge where accommodation 
was greater on structurally low FB III in the MAZ (compare to Young et al., 2000; Winn et al., 2001, 
Figure 11). This turbidity formed submarine fans composed of small clasts and fine-grained sandstones 
(facies type B, Figure 3). These clast-rich turbidites reflect an increase in depositional energy coupled 
with decreasing water depths (compare Young et al., 2000). Deposition of deep-marine carbonates in 
the upper part of LST2, on structurally low FB III in the MAZ (at the GB84-6 well, Figure 11b), was 
relatively short-lived. The carbonates may have developed during a break in siliciclastic deposition 
or lateral to the main clastic entry point. The carbonates were locally re-worked when sand was 
subsequently transported across them, possibly due to delta channel or lobe switching or sudden 
sediment input during seasonal fluvial flooding. Deposition of deep-marine pelagic shales during 
late LST2 on the structurally low FB III may reflect the cessation of siliciclastic deposition (Figure 
11a). Furthermore, the presence of large amounts of Fe-oxides in this portion of LST2 may indicate 
deposition in an oxidizing environment (Salah and Alsharhan, 1997). 

FB IVa represented an elevated ridge with weak subsidence rates during KS1; the deposition of fan 
deltas resulted in a progressive reduction in water depth and evaporate sedimentation (compare 
Herkat and Guiraud, 2006, Figure 11a). On FB I and FB II in the MAZ, sediment supply exceeded 
subsidence rates and resulted in the deposition of fan-delta sediments on both fault blocks with 
greater thickness on the structurally deeper FB II. At the end of LST2 accumulation on the two fault 
blocks was balanced and, as a consequence, both fault blocks (I and II) reacted during future intervals 
as one (Figure 11a). The great thickness of LST2 sediments on FB III implies high sediment supply 
(Figure 6) coupled with high subsidence rates. Thickness variations along FB III (Figure 6) indicate 
rotation down to the northwest (similar to FB IVa), whereas thickness variations along FB VI reflect 
a rotation down to the southeast. 

Transgressive Surface of Kareem Sequence 2 (TS2)
The upper boundary of LST2 is marked by an abrupt increase in GR which delineates the TS2 surface 
(Figure 4). TS2 represents the onset of a major sea-level rise that may have been associated with 
transgressive erosion.
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Figure 11: Tectono-sedimentary model 
(a) and lithofacies distribution map (b) 
for lowstand systems tract 2 (LST2) of 
the Kareem Formation. 

Transgressive Systems Tract of Kareem Sequence 2 (TST2)
TST2 sediments have quite similar lithologic and log characteristics to those of TST1. TST2 sediments 
are mainly calcareous shales with few sandstones and argillaceous limestone intercalations on FB I, 
FB II, and FB IVa (at the GC84-14, LL87-3, ERDMA-1, Amal-10AST and Amal-8 wells); mainly shales 
with sandstones and few limestone intercalations on FB III (at the GB84-6 and GS334-2 wells); and 
argillaceous limestones with few sandstones on FB IVb (at the NN88-1and NN89-1 wells, Figure 12). 
Sandstones (facies type B, Figure 3), siltstones, shales, and few limestone intercalations accumulated 
on FB VI (at S. Ras El-Ush-1 and W. Ashrafi-1X) at the southernmost part of the WSB (Figure 12). The 
thickness of TST2 varies from 45 ft at S. Ras El-Ush-1 to 153 ft at NN 88-1 (Figure 4). 

Interpretation of Transgressive Systems Tract of Kareem Sequence 2 (TST2)
The log motif and lithologic properties of TST2 along the WSB indicate repeated upward-fining and 
upward-deepening retrogradational parasequences composed mainly of distal, shale-rich, marine 
sediments. The frequent occurrence of planktonic foraminifer and nannofossils in these sediments 
indicate low-energy middle- to outer-neritic to upper-bathyal depositional settings. In contrast to 
TST1, hemipelagic carbonates are only recorded on FB IVb (Figure 12). 

Pebbly sandstones (facies type B, Figure 3), with polymictic clasts, siltstones, and shales (rich in 
planktonic foraminifer and nannofossils) intercalations on FB VI reflect deposition of a submarine 
fan associated with high subsidence rates (Figure 12a). The source of this submarine fan, like during 
LST2, was detritus derived from the elevated Proterozoic and pre-Miocene footwall blocks along the 
western rift shoulder. Drainage systems extended along the elevated FB V above sea level and fed 
submarine fans that prograded to the southeast (Figure 12a). Progradation of the submarine fans 
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indicates that sediment supply was greater than the rate of newly generated accommodation space at 
FB VI. However, sediment supply was unable to keep up with accommodation development across 
the fan at FB VI resulting in abandonment and transgression (compare Young et al., 2000; Herkat and 
Guiraud, 2006). Generally, the “dirtying-upward” GR of TST2 (Figure 4) may be a result of a decrease 
in sand percentage in thinly bedded turbidites, and so may record the abandonment of submarine-
fan deposition.

Compared to the high influx of submarine fan sediments, little terrigenous material was deposited 
on FB I, FB II, and FB III (in the MAZ) and on FB IVa and FB IVb (in the AZP) via the drainage 
systems on FB V (Figure 12). The nonmarine units indicate a return to fluvial processes and to 
progressive unroofing of the uplifted Proterozoic and pre-Miocene footwall blocks along the western 
rift shoulder. FB IVa is characterized by higher subsidence rates than FB IVb during TST2 deposition. 
This difference led to deep-marine pelagic shale with higher planktonic foraminiferal abundance on 
FB IVa, in contrast to hemipelagic carbonates on FB IVb (Figure 12a). The movement of FB IVa marks 
an inversion of the subsidence compared with the deposition of preceding system tracts (Herkat and 
Guiraud, 2006). Thickness variations of TST2 along FB III and FB VI (Figure 6) indicate that these 
blocks rotated down to the southeast, whereas thickness variations along FB IVb reveal that this block 
rotated down to the northwest.

Maximum Flooding Surface of Kareem Sequence 2 (MFS2)
MFS2 delineates the upper boundary of the retrogradational succession TST2. The surface is marked 
by maximum GR response and PFA (Figure 4). It may coincide with the T40 terrace of Ramzy et al. 
(1996). MFS2 is overlain by the prograding interval of HST2.

Highstand Systems Tract of Kareem Sequence 2 (HST2)
HST2 sediments have very similar log features to those of HST1 (Figure 5). Moreover, they show 
similar lithologic characteristics as TST2 sediments, with mainly sandstones (facies type B, Figure 3), 
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shales, and few limestone intercalations deposited on FB III (at the GB84-6 and GS334-2 wells, Figure 
13). The sandstones contain clasts that are smaller in size than those of TST2. The thickness of HST2 is 
quite variable (ranging between 30 ft at NN89-1 and 722 ft at W. Ashrafi-1X, Figure 4). 

Interpretation Highstand Systems Tract of Kareem Sequence 2 (HST2)
The coarsening- or sandying-upward pattern of HST2 reflects a decelerating relative sea-level rise 
and return to terrigenous sedimentation across the shelf. A submarine fan was deposited during this 
interval on FB VI (Figure 13a). With its southeasterly directed progradation, we assume a similar 
source as for the TST2 submarine fans (Figure 13). The large thickness of HST2 (Figure 6) on FB VI 
indicates high subsidence rates of this fault block. Furthermore, submarine fan progradation suggests 
that sediment supply exceeded the rate of new accommodation space at FB VI. At the same time, 
hemipelagic carbonate sediments accumulated on FB IVb (Figure 13a).

Another submarine fan formed on FB III (Figure 13a) with a similar source of terrigenous material 
as submarine fan deposited during LST2. On the other hand, smaller clast sizes may indicate minor 
fluvial discharge (Young et al., 2000). This fan’s large thickness (Figure 6) reflects deposition coupled 
with high subsidence rates of this fault block. Similar to TST2, only thin terrigenous sediments were 
deposited on FB I and FB II (in the MAZ) or FB IVa and FB IVb (in the AZP). Thickness variations 
along FB IVa and FB VI (Figure 6) indicate that these blocks rotated down to the southeast, whereas 
isopach patterns along FB IVb reveal that this block rotated down to the northwest. 

Figure 13: Tectono-sedimentary model (a) and 
lithofacies distribution map (b) for highstand 
systems tract 2 (HST2) of the Kareem Formation. 
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Upper Boundary of Kareem Sequence 2 (SB2)
The upper limit of HST2 is determined by a third sequence boundary SB3 (Figure 4) which is marked 
by an abrupt decrease in GR. It coincides with the T50 terrace (Figure 5), a major unconformity in the 
Gulf of Suez (Dolson et al., 1996; Ramzy et al., 1996; Krebs et al., 1997).  

DISCUSSION AND CONCLUSIONS

Complex interaction between eustasy and tectonism apparently controlled the depositional processes 
and sequence development of the Middle Miocene (Langhian) Kareem Formation in the NW-SE 
oriented extensional WSB. The complicated structural and depositional history with abrupt thickness 
and facies changes, deep basins, high relief, and differential fault-block movements is similar to 
structural and depositional complexity recorded elsewhere in the Gulf of Suez rift (e.g., Burchette, 
1987; Schütz, 1994; Winn et al., 2001), the coastal Red Sea (e.g., Montenat et al., 1988; Gawthorpe et al., 
1990; Purser et al., 1990; Khalil and McClay, 2006), the central North Sea basin (Bishop et al., 1995), the 
north-eastern Gulf of Mexico (Wu et al., 1990), Central Greece Gulf basins (e.g., Gulf of Corinth and 
Gulf of Evvia, Gawthorpe et al., 1994) and other continental rifts (e.g., Gawthorpe and Hurst, 1993). 
The Kareem Formation in the study area can be subdivided into two third-order sequences based on 
the identification of key chronostratigraphic surfaces and system tracts. 

The depositional models we propose for the syn-rift sediments of the various systems tracts of both 
sequences indicate a strong tectonic influence controlling subsidence of the individual fault blocks 
along the WSB during the “mid-Clysmic” or “mid-Rudeis” event (Patton et al., 1994). This event caused 
a rejuvenation of basement faults, which resulted in abrupt thickness and facies changes coupled 
with rotation of the different fault blocks during deposition of the Kareem Formation. The high dip 
angle of the faults (> 60°) along the WSB created steep topographic and bathymetric gradients and 
development of depositional systems with a discrete shelf-slope break along the western rift shoulder 
(compare Gawthorpe et al., 1994). Our tectono-sedimentary models might be applied to other rift 
basins where pre-existing basement structures have exerted a strong control on rift-fault geometries 
and patterns. 

Most of the systems tracts are preserved as complete successions with larger thicknesses in the Morgan 
Accommodation Zone (MAZ), because major transfer (accommodation) zones commonly represent 
footwall topographic lows. Hence, the accommodation zone acts as a focus for increasing volumes 
of sediment entering rifts (compare Leeder and Gawthorpe, 1987; Morely et al., 1990; Gawthorpe 
et al., 1994; Jackson et al., 2005). Overall, the rate of subsidence of the hangingwall and resulting 
accommodation development, coupled with high rate of sediment supply, exceeded the rate of 
relative sea-level fall during deposition of the Kareem Formation. 

Compared with the first Kareem sequence (KS1), subsidence rates of the second Kareem sequence 
(KS2) were significantly larger as indicated by larger thicknesses and deposition of a large number 
of thick fan deltas and submarine fans (mainly on FB III and FB VI). These thick deposits may reflect 
increased sediment supply due to wet climates during the Middle Miocene (Perrin et al., 1998; Mader 
et al., 2004).

The submarine fans apparently originated from drainage systems that experienced frequent slumping. 
Abundant detritus was derived from the elevated Proterozoic and pre-Miocene footwall blocks along 
the western rift shoulder. The drainage systems also yielded thin fluvial sandstones on the structurally 
elevated FB V (above sea level) at the ERDMA-2 well. This sandstone can not be placed into one of 
the defined systems tracts due to its reduced thickness, which also makes it difficult to differentiate 
from the underlying Rudeis Formation. Moreover, strong fluvial influx on the structurally high FB 
V resulted in the erosion of Early to Middle Miocene sediments (early Kareem, Rudeis and Nukhul 
formations) in the Amal-Zeit Province (AZP) at the SB374-2C well.

Within our sequence stratigraphic framework, the interaction between tectonism and sedimentation 
of the syn-rift Kareem Formation becomes more obvious and allows highlighting the paleotectonic 
history. Despite the depositional complexity, small-scale fault block by fault block facies interpretation 
allows delineating tectonically influenced sedimentation processes. Our tectono-sedimentary models 



147

Middle Miocene Kareem Formation, Egypt

could be used for facies-predictions in the other parts of the extensional Gulf of Suez rift basin to 
clarify the poor understanding of interacting tectonism and sedimentation. 
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